Skip to main content

Exploring Temporal Functional Dependencies Between Latent Skills in Cognitive Diagnostic Models

  • 666 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 353)

Abstract

Cognitive Diagnostic Models (CDMs) provide diagnostic information about a subject’s skill profile by specifying relationships between the student’s latent skill profile, item characteristics, and student responses to those items. In this study, we analyze the ASSISTment Math 2004–2005 dataset to explore whether latent skill profiles estimated at one assessment point are predictive of latent skill profiles at a subsequent assessment point. In addition, we wanted to investigate the hypothesis that latent skills evolve independently. We found that latent skills estimated at subsequent assessment points were predicted by latent skills at previous assessment points when these were spaced at least six weeks apart. In addition, we found evidence that latent skills may not independently evolve despite the fact that this is a common assumption in longitudinal modeling. Some comments are then provided regarding how such results might inform the design of new longitudinal cognitive diagnostic models of student learning in semester-long courses.

Keywords

  • Longitudinal cognitive diagnostic models
  • Cognitive diagnostic assessments
  • Latent transition analysis
  • Diagnostic classification models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-74772-5_23
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-74772-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  • AERA, APA, & NCME. (2014). Standards for educational and psychological testing: Washington, DC

    Google Scholar 

  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles Policy & Practice, 5(1), 7–74

    Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443–459. http://dx.doi.org/10.1007/bf02293801

    CrossRef  MathSciNet  Google Scholar 

  • Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27(1), 131–157

    CrossRef  Google Scholar 

  • de la Torre, J. (2009). DINA model and parameter estimation: a didactic. Journal of Educational and Behavioral Statistics, 34, 115–130

    CrossRef  Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199

    CrossRef  MathSciNet  Google Scholar 

  • Golden, R. M. (2020). Statistical machine learning: A unified framework. CRC Press

    CrossRef  Google Scholar 

  • Golden, R. M., Henley, S. S., White, H., & Kashner, T. M. (2016). Generalized information matrix tests for detecting model misspecification. Econometrics, 4(4), 46

    CrossRef  Google Scholar 

  • Jarosz, A. F. & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting bayes factors. The Journal of Problem Solving, 7, 2–9

    CrossRef  Google Scholar 

  • Kass, R. E. & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795

    CrossRef  MathSciNet  Google Scholar 

  • Kaya, Y. & Leite, W. (2017). Assessing change in latent skills across time with longitudinal cognitive diagnosis modeling: An evaluation of model performance. Educational and Psychological Measurement, 77, 369–388

    CrossRef  Google Scholar 

  • King, G., & Roberts, M. E. (2015). How robust standard errors expose methodological problems they do not fix, and what to do about it. Political Analysis, 159–179

    Google Scholar 

  • Koedinger, K. R., d. Baker, R. S., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J. (2010). A data repository for the EDM community: The PSLC DataShop. In C. Romero et al. (Eds.), Handbook of Educational Data Mining. CRC Press

    Google Scholar 

  • Leighton, J., & Gierl, M. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge University Press

    CrossRef  Google Scholar 

  • Li, F., Cohen, A., Bottge, B. A., & Templin, J. L. (2016). A latent transition analysis model for assessing change in cognitive skills. Educational and Psychological Measurement, 76, 181–204

    CrossRef  Google Scholar 

  • Ma, W., & Torre, J. de la. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14), 1–26

    CrossRef  Google Scholar 

  • Madison, M. J., & Bradshaw, L. (2018). Assessing growth in a diagnostic classification model framework. Psychometrika, 83, 963–990

    CrossRef  MathSciNet  Google Scholar 

  • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163

    CrossRef  Google Scholar 

  • Razzaq, L. M., Feng, M., Nuzzo-Jones, G., Heffernan, N. T., Koedinger, K. R., Junker, B., et al. (2005). Blending assessment and instructional assisting. In Proceedings of the 12th International Conference on Artificial Intelligence in Education (pp. 555–562)

    Google Scholar 

  • Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20(4), 345–354

    CrossRef  Google Scholar 

  • Templin, J. L. & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305

    CrossRef  Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica: Journal of the Econometric Society, 50(1), 1–25

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was partially funded by the University of Texas at Dallas Office of Research through the Social Sciences SEED Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athul Sudheesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sudheesh, A., Golden, R.M. (2021). Exploring Temporal Functional Dependencies Between Latent Skills in Cognitive Diagnostic Models. In: Wiberg, M., Molenaar, D., González, J., Böckenholt, U., Kim, JS. (eds) Quantitative Psychology. Springer Proceedings in Mathematics & Statistics, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-030-74772-5_23

Download citation