Advertisement

Origin of the Domesticated Apples

Chapter
  • 154 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Genomic, genetic, and archaeobotanical findings have confirmed that alongside interspecific hybridizations between Malus sieversii from Central Asia and wild species along the Silk Road, segmental duplications, point mutations, and clonal propagation have led to the fixation of traits in cultivated apples, unlike in annual crops. Moreover, there is minimal evidence for long-term intentional and targeted selection for fruit quality and horticultural traits; whereas, self-incompatibility, long juvenile phase, and clonal propagation have maintained genetic diversity in apples. Only modern (commercial) apple cultivars hint at the reduction of diversity and selection for commercially important traits. Furthermore, the wide phenotypic variations present in pre-breeding and advanced breeding material reveal that a great deal of genetic diversity is still maintained in the cultivated gene pool.

References

  1. Allaby RG, Ware RL, Kistler L (2018) A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol Appl 12:29–37.  https://doi.org/10.1111/eva.12680CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678PubMedGoogle Scholar
  3. Burak M, Ergül A, Kazan K, Akçay ME, Yüksel C, Bakir M, Mutaf F, Akpinar AE, Yaşasin AS, Ayanoğlu H (2014) Genetic analysis of Anatolian apples (Malus sp.) by simple sequence repeats. J Syst Evol 52:580–588.  https://doi.org/10.1111/jse.12099CrossRefGoogle Scholar
  4. Bus VGM, Laurens FND, Van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740–7A. New Phytol 166:1035–1049CrossRefGoogle Scholar
  5. Bus VGM, Rikkerink EHA, Caffier V, Dural C, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopath 49:391–413CrossRefGoogle Scholar
  6. Campa M, Piazza S, Righetti L, Oh C, Conterno L, Borejsza-Wysocka E, Nagamangala KC, Beer SV, Aldwinckle HS, Malnoy M (2019) HIPM is a susceptibility gene of Malus spp.: Reduced expression reduces susceptibility to Erwinia amylovora. Mol Plant Microbe Inter 32:167–175CrossRefGoogle Scholar
  7. Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, Silva ND, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239CrossRefGoogle Scholar
  8. Cornille A, Antolín F, Garcia E, Vernesi C, Fietta A, Brinkkemper O, Kirleis W, Schlumbaum A, Roldán-Ruiz I (2019) A multifaceted overview of apple tree domestication. Trends Plant Sci 24:770–782.  https://doi.org/10.1016/j.tplants.2019.05.007CrossRefPubMedGoogle Scholar
  9. Cornille A, Giraud T, Smulders MJ, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65CrossRefGoogle Scholar
  10. Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Cam BL, Nersesyan A, Clavel J, Olonova M, Feugey L (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8:e1002703.  https://doi.org/10.1371/journal.pgen.1002703CrossRefPubMedPubMedCentralGoogle Scholar
  11. Crosby JA, Janick J, Pecknold PC, Goffreda JC, Korban SS (1994) ‘Gold Rush’ apple. HortScience 29:827–828CrossRefGoogle Scholar
  12. Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel C-E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106.  https://doi.org/10.1038/ng.3886CrossRefPubMedGoogle Scholar
  13. De Paepe D, Valkenborg D, Noten B, Servaes K, Diels L, Loose MD, Van Droogenbroeck B, Voorspoels S (2015) Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 11:739–752.  https://doi.org/10.1007/s11306-014-0730-2CrossRefGoogle Scholar
  14. Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F (2017) Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. J Exp Bot 68:1451–1466.  https://doi.org/10.1093/jxb/erx017CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong G-Y, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249.  https://doi.org/10.1038/s41467-017-00336-7CrossRefPubMedPubMedCentralGoogle Scholar
  16. El-Sharkawy I, Liang D, Xu K (2015) Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66:7359–7376.  https://doi.org/10.1093/jxb/erv433CrossRefPubMedPubMedCentralGoogle Scholar
  17. Emeriewen OF, Richter K, Piazza S, Micheletti D, Broggini GAL, Berner T, Keilwagen J, Hanke M, Malnoy M, Peil A (2018) Towards map-based cloning of FB_Mfu10: Identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol Breed 38:106CrossRefGoogle Scholar
  18. Espley RV, Bovy A, Bava C, Jaeger SR, Tomes S, Norling C, Crawford J, Rowan D, McGhie TK, Brendolise C, Putterill J, Schouten HJ, Hellens RP, Allan AC (2013) Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol J 11:408–419.  https://doi.org/10.1111/pbi.12017CrossRefPubMedGoogle Scholar
  19. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427.  https://doi.org/10.1111/j.1365-313X.2006.02964.xCrossRefPubMedPubMedCentralGoogle Scholar
  20. Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet Genomes 9:237–251CrossRefGoogle Scholar
  21. Farneti B, Masuero D, Costa F, Magnago P, Malnoy M, Costa G, Vrhovsek U, Mattivi F (2015) Is there room for improving the nutraceutical composition of apple? J Agric Food Chem 63:2750–2759.  https://doi.org/10.1021/acs.jafc.5b00291CrossRefPubMedGoogle Scholar
  22. Gao Y, Liu F, Wang K, Wang D, Gong X, Liu L, Richards CM, Henk AD, Volk GM (2015) Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources. Tree Genet Genomes 11:106.  https://doi.org/10.1007/s11295-015-0913-7CrossRefGoogle Scholar
  23. Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411.  https://doi.org/10.1007/s11032-008-9243-xCrossRefGoogle Scholar
  24. Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842.  https://doi.org/10.1007/s10722-008-9404-0CrossRefGoogle Scholar
  25. Gross BL, Henk AD, Richards CM, Fazio G, Volk GM (2014) Genetic diversity in Malus x domestica (Rosaceae) through time in response to domestication. Am J Bot 101:1770–1779CrossRefGoogle Scholar
  26. Gutierrez BL, Zhong G-Y, Brown SK (2018) Genetic diversity of dihydrochalcone content in Malus germplasm. Genet Resour and Crop Evol 65:1485–1502.  https://doi.org/10.1007/s10722-018-0632-7CrossRefGoogle Scholar
  27. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709CrossRefGoogle Scholar
  28. Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637.  https://doi.org/10.1016/j.ygeno.2006.12.010CrossRefPubMedGoogle Scholar
  29. Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130.  https://doi.org/10.1093/jxb/err215CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harada T, Kurahashi W, Yanai M, Wakasa Y, Satoh T (2005) Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Scient Hortic 105:447–456.  https://doi.org/10.1016/j.scienta.2005.02.006CrossRefGoogle Scholar
  31. Höfer M, Meister A (2010) Genome size variation in Malus species. J Bot 2010:e480873.  https://doi.org/10.1155/2010/480873CrossRefGoogle Scholar
  32. Jakobek L, Barron AR (2016) Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J Food Comp Anal 45:9–15.  https://doi.org/10.1016/j.jfca.2015.09.007CrossRefGoogle Scholar
  33. Janick J, Cummins J, Brown S, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding, vol 1. John Wiley & Sons, Tree and Tropical Fruits, pp 1–77Google Scholar
  34. Juniper BE, Mabberley DJ (2006) The story of the apple. Timber Press, Portland, ORGoogle Scholar
  35. Kellerhals M (2009) Introduction to apple (Malus × domestica). In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, New York, NY, pp 73–84CrossRefGoogle Scholar
  36. Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306CrossRefGoogle Scholar
  37. Khan MA, Olsen KM, Sovero V, Kushad MM, Korban SS (2014) Fruit quality traits have played critical roles in domestication of the apple. Plant Genome 7:1–18.  https://doi.org/10.3835/plantgenome2014.04.0018CrossRefGoogle Scholar
  38. Korban SS, Tartarini S (2009) Apple structural genomics. In: Folta K, Gardiner S (eds) Genetics and genomics of rosaceae. Springer-Science, NY, pp 85–119CrossRefGoogle Scholar
  39. Korban SS, Wannarat W, Rayburn CM, Tatum TC, Rayburn AL (2009) Genome size and nucleotypic variation in Malus germplasm. Genome 52:148–155.  https://doi.org/10.1139/G08-109CrossRefPubMedGoogle Scholar
  40. Kostick SA, Norelli JL, Evans KM (2019) Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathol 68:985–996.  https://doi.org/10.1111/ppa.13012CrossRefGoogle Scholar
  41. Kron P, Husband BC (2009) Hybridization and the reproductive pathways mediating gene flow between native Malus coronaria and domestic apple, M. domestica. Botany 87:864–874.  https://doi.org/10.1139/B09-045
  42. Kumar S, Raulier P, Chagné D, Whitworth C (2014) Molecular-level and trait-level differentiation between the cultivated apple (Malus × domestica Borkh.) and its main progenitor Malus sieversii. Plant Genet Resour 12:330–340CrossRefGoogle Scholar
  43. Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50.  https://doi.org/10.1186/1471-2229-10-50CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ma B, Chen J, Zheng H, Fang T, Ogutu C, Li S, Han Y, Wu B (2015) Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem 172:86–91.  https://doi.org/10.1016/j.foodchem.2014.09.032CrossRefPubMedGoogle Scholar
  45. Ma B, Liao L, Peng Q, Fang T, Zhou H, Korban SS, Han Y (2017) Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple. J Integr Plant Biol 59:190–204.  https://doi.org/10.1111/jipb.12522CrossRefPubMedGoogle Scholar
  46. Ma B, Yuan Y, Gao M, Li C, Ogutu C, Li M, Ma F (2018) Determination of predominant organic acid components in Malus species: correlation with apple domestication. Metabolites 8:74.  https://doi.org/10.3390/metabo8040074CrossRefPubMedCentralGoogle Scholar
  47. Maere S, Bodt SD, Raes J, Casneuf T, Montagu MV, Kuiper M, de Peer YV (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459.  https://doi.org/10.1073/pnas.0501102102CrossRefPubMedPubMedCentralGoogle Scholar
  48. Malladi A, Hirst PM (2010) Increase in fruit size of a spontaneous mutant of ‘Gala’ apple (Malus ×domestica Borkh.) is facilitated by altered cell production and enhanced cell size. J Exp Bot 61:3003–3013.  https://doi.org/10.1093/jxb/erq134CrossRefPubMedPubMedCentralGoogle Scholar
  49. Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48.  https://doi.org/10.1111/j.1469-8137.2012.04253.xCrossRefPubMedGoogle Scholar
  50. Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852.  https://doi.org/10.1038/nrg3605CrossRefPubMedGoogle Scholar
  51. Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98:1389–1414.  https://doi.org/10.3732/ajb.1000522CrossRefPubMedGoogle Scholar
  52. Morimoto T, Banno K (2015) Genetic and physical mapping of Co, a gene controlling the columnar trait of apple. Tree Genet Genomes 11:807.  https://doi.org/10.1007/s11295-014-0807-0CrossRefGoogle Scholar
  53. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166.  https://doi.org/10.1104/pp.105.076208CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nikiforova SV, Cavalieri D, Velasco R, Goremykin V (2013) Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Mol Biol Evol 30:1751–1760.  https://doi.org/10.1093/molbev/mst092CrossRefPubMedGoogle Scholar
  55. Noiton D, Shelbourne C (1992) Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219Google Scholar
  56. Ordidge M, Kirdwichai P, Baksh MF, Venison EP, Gibbings JG, Dunwell JM (2018) Genetic analysis of a major international collection of cultivated apple varieties reveals previously unknown historic heteroploid and inbred relationships. PLoS One 13:e0202405.  https://doi.org/10.1371/journal.pone.0202405CrossRefPubMedPubMedCentralGoogle Scholar
  57. Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852.  https://doi.org/10.1093/jxb/erm257CrossRefPubMedGoogle Scholar
  58. Patocchi A, Walser M, Tartarini S, Broggini GA, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636CrossRefGoogle Scholar
  59. Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel C-E, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S (2019) Apple whole genome sequences: recent advances and new prospects. Hortic Res 6:1–24.  https://doi.org/10.1038/s41438-019-0141-7CrossRefGoogle Scholar
  60. Pompili V, Costa LD, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotech J 18:845–858CrossRefGoogle Scholar
  61. Singh J, Sun M, Cannon S, Wu J, Khan A (2021) An accumulation of genetic variation and selection across the disease-relatedgenes during apple domestication. Tree Geneti Genomes 17:1–11Google Scholar
  62. Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for rosaceae genomics. Plant Physiol 147:985–1003.  https://doi.org/10.1104/pp.107.115618CrossRefPubMedPubMedCentralGoogle Scholar
  63. Spengler RN (2019) Origins of the apple: the role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Front Plant Sci 10:617.  https://doi.org/10.3389/fpls.2019.00617CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stushnoff C, McSay AE, Luby J, Forsline PL (2002) Diversity of phenolic antioxidant content and radical scavenging capacity in the USDA apple germplasm core collection. Acta Hortic 305–312.  https://doi.org/10.17660/ActaHortic.2003.623.34
  65. Tatum TC, Stepanovic S, Biradar DP, Rayburn AL, Korban SS (2005) Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930CrossRefGoogle Scholar
  66. Treutter D (2010) Managing phenol contents in crop plants by phytochemical farming and breeding—visions and constraints. Int J Mol Sci 11:807–857CrossRefGoogle Scholar
  67. USDA (2014) National genetic resources program. Germplasm Resources Information Network (GRIN). USDA, ARS Natl. Germplasm Resources Laboratory, Beltsville, MD. http://www.ars-grin.gov/npgs/index.html. Accessed 5 May 2017
  68. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839.  https://doi.org/10.1038/ng.654CrossRefPubMedGoogle Scholar
  69. Vogt I, Wohner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke M, Peil A (2013) Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora. New Phytol 197:1262–1275CrossRefGoogle Scholar
  70. Volk GM, Henk AD, Baldo A, Fazio G, Chao CT, Richards CM (2015) Chloroplast heterogeneity and historical admixture within the genus Malus. Am J Bot 102:1198–1208.  https://doi.org/10.3732/ajb.1500095CrossRefPubMedGoogle Scholar
  71. Volz RK, McGhie TK (2011) Genetic variability in apple fruit polyphenol composition in Malus × domestica and Malus sieversii germplasm grown in New Zealand. J Agric Food Chem 59:11509–11521.  https://doi.org/10.1021/jf202680hCrossRefPubMedGoogle Scholar
  72. Wagner I, Maurer WD, Lemmen P, Schmitt HP, Wagner M, Binder M, Patzak P (2014) Hybridization and genetic diversity in wild apple (Malus sylvestris (L.) Mill) from various regions in Germany and from Luxembourg. Silvae Genet 63:81–93.  https://doi.org/10.1515/sg-2014-0012CrossRefGoogle Scholar
  73. Yao L, Zheng X, Cai D, Gao Y, Wang K, Cao Y, Teng Y (2010) Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus. Genet Resour Crop Evol 57:841–851.  https://doi.org/10.1007/s10722-009-9524-1CrossRefGoogle Scholar
  74. Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P (2019) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10:1–13.  https://doi.org/10.1038/s41467-019-09518-xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Plant Pathology and Plant-Microbe Biology SectionCornell UniversityGenevaUSA
  2. 2.USDA-ARS Plant Genetic Resources Unit, New York State Agricultural Experiment StationGenevaUSA

Personalised recommendations