Skip to main content

Sustainability and Plasticity of the Olive Tree Cultivation in Arid Conditions

  • Chapter
  • First Online:
Agriculture Productivity in Tunisia Under Stressed Environment

Part of the book series: Springer Water ((SPWA))

Abstract

The olive tree is the major cultural crop in many countries around the Mediterranean Sea. The olive orchards have been established in very different climatic conditions from arid condition (Southern Mediterranean) to more humid conditions (Northern one) and even in poor soil conditions with low organic matter. The tolerance of the olive tree to drought, its salt tolerant character and its major role both in minimizing erosion and desertification effects, have as result that the olive cultivation is the main crop able to establish a sustainable system in subsistence agricultural areas. The Tunisian olive growing counts about 82 millions of olive trees covering 1 835 000 ha. The major part of the olive orchards are conducted under rain-fed conditions (97% of the area). More than 80% of olive orchards are located in semi-arid and arid conditions (center and south), where the average of rainfall oscillated between 100–300 mm and showed low yield. The traditional cultivation method still remains the most frequent system used on extensive conditions. So, the main objective of the grower is to obtain higher productivity at the minimum cost and to produce olive oil with added value. Efforts have been doing in Tunisia, notably by increasing tree density and even by shifting from rain-fed to irrigated conditions. Nowadays, the adoption of an appropriate technological package for each planting system (choice of variety, training system, pruning, irrigation, fertilization and pest control) is necessary to enhance the production and the profit of the grower. This work is a review of the existing genetic resources, the required environmental conditions and the orchard management used in different olive growing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maillard R (1981) L’olivier. Comité technique de l’olivier (ed),Ctifl, pp 147. Mariscal MJ, Orgaz F, Villalobos FJ (2000) Modelling and measurement of radiation interception by olive canopies. Agric For Meteor 100:183–197

    Google Scholar 

  2. Loumou A, Giourga C (2003) Olive groves: the life and the identity of the Mediterranean. Agric Hum Values 20:87–95

    Article  Google Scholar 

  3. Breton C, Médail F, Pinatel C, Bervillé A (2006) De l’olivier à l’oléastre : origine et domestication de l’Olea europaea L. dans le Bassin méditerranéen. Cahiers Agricul 154):329–336

    Google Scholar 

  4. I.O.C (1997) Encyclopédie mondiale de l’olivier. Conseil Oléicole International (ed) Première édition, Avril 1997, Barcelone, pp 19–20

    Google Scholar 

  5. I.O.C (2009) Conseil Oléicole International. www.internationaloliveoil.org

  6. Afidol (2009) Compte rendu d’activités. Association française interprofessionnelle de l’olive, p 40. www.afidol.org

  7. O.N.H (2016) Office National de l’huile. https://www.onh.com.tn

  8. Trousset P (2000/2011) Hadrumetum. In: Encyclopédie berbère, 22/Hadrumetum-Hidjaba. https://encyclopedieberbere.revues.org/1635

  9. Jardak T (2006) The olive industry in Tunisia. In: Proceedings of Olivebioteq, Special seminars and invited lectures, Marza del Vallo, Italy, 5–10 November

    Google Scholar 

  10. I.O.C (2015) Conseil Oléicole International. Texas. Agric Meteor 39:309–327

    Google Scholar 

  11. D.G.P.A (2015) Direction générale de la production agricole. Ministère de l’agriculture et des ressources hydrauliques de La Tunisie

    Google Scholar 

  12. I.O.C (2019) Conseil Oléicole International. www.internationaloliveoil.org

  13. F.A.O (2015) Tunisie, Analyse de la filière oléicole. Food and Agriculture Organization of the United Nations, pp 186

    Google Scholar 

  14. Belaj A, León L, Satovic Z, De la Rosa R (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Sci Hortic 129:561–569

    Article  Google Scholar 

  15. Abdelhamid S, Grati-kamoun N, Marra F, Caruso T (2013) Genetic similarity among Tunisian cultivated olive estimated through SSR markers. Sci Agric 70(1):33–38

    Article  Google Scholar 

  16. Fernández-Escobar R, De la Rosa R, León L, Gomez JA, Testi L, Orgaz F, Gil-Ribes JA, Quesada-Moraga E, Trapero A, Msallem M (2013) Evolution and sustainability of the olive production systems. Opt Mediterra 106:11–41

    Google Scholar 

  17. Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez C (2014) Identification of the worldwide olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genome 10:141–155

    Article  Google Scholar 

  18. Laaribi I, Mezghani Ayachi M, Mars M (2014) Phenotypic diversity of some oliveTree progenies issued from a Tunisian Breeding program. Eur Sci J 10(6):292–313

    Google Scholar 

  19. Bartolini G, Petruccelli R, Tindall HD (2002) Classification, origin, diffusion and history of the olive. In: Tindal HD, Menini UG (eds) FAO Rome, Italy

    Google Scholar 

  20. Ganino T, Bartolini G, Fabbri A (2006) The classification of olive germoplasm. J Hortic Sci Biotech 81:319–334

    Article  Google Scholar 

  21. Bartolini G, Prevost G, Messeri C, Carignani G (2008) Olive Germoplasm Cultivars and World-Wide Collections. FAO, Sesto Fiorentino

    Google Scholar 

  22. Trigui A, Yengui A, Belguith H (2006) Olive germoplasm in Tunisia. Olea, FAO Olive Network 25:19–23

    Google Scholar 

  23. Trentacoste ER, Puertas CM (2011) Preliminary characterization and morpho-agronomic evaluation of the olive germplasm collection of the Mendiza province (Argentina). Euphytica 177:99–109

    Article  Google Scholar 

  24. Mehri H, Hellali R (1995) Etude pomologique des principales variétés d'oliviers cultivées en Tunisie. Ezzaitouna, Numéro Spécial, Ed (IRESA), Institut de l’Olivier, Tunisie

    Google Scholar 

  25. Grati Kamou N, Khlif M (2001) Caractérisation technologiques des variétés d'olivier cultivées en Tunisie. Ezzaitouna, Numéro spécial, pp 74

    Google Scholar 

  26. Trigui A, Msallem M (2002) Oliviers de Tunisie: Catalogue des Variétés Autochtones & Types Locaux: Identification variétale & Caractérisation morpho-pomologique des Ressources Génétiques Oléicoles de Tunisie. IRESA (Ministère de l’Agriculture), Institut de l’Olivier, Tunisia, vol I, pp 159

    Google Scholar 

  27. Grati Kamoun N, Lamy Mahmoud F, Rebaï A, Gargouri A, Panaud O, Saar A (2006) Genetic diversity of Tunisian olive tree (Olea europaea L.) cultivars assessed by AFLP markers. Gen Res Crop Evol 53:265–275

    Article  CAS  Google Scholar 

  28. Zitoun B, Bronzini De Caraffa V, Giannettini J, Breton C, Trigui A, Maury J, Gambotti C, Marzouk B, Berti L (2008) Genetic diversity in Tunisian olive accessions and their relatedness with other Mediterranean olive genotypes. Sci Hortic 115(4):416–419

    Article  CAS  Google Scholar 

  29. Fendri M, Trujillo I, Trigui A, Rodríguez-García MI, Alché Ramírez JDD (2010) Simple Sequence repeat identification and endocarp characterization of olive tree accessions in a Tunisian germplasm collection. HortSci 45(10):1429–1439

    Article  Google Scholar 

  30. Rekik HI, Grati kammoun N, Makhloufi E, Rebaï A (2010) Discovery and potential of SNP markers in characterization of Tunisian olive germplasm. Diversity 2:17–27

    Google Scholar 

  31. F.A.O (1981) Proposition d’un programme coopérative sur les ressources génétiques de l’olivier. Rapport du comité de la production oléicole, 4ème session, Madrid, 9–12 juin

    Google Scholar 

  32. Barranco D, Rallo L (1984) Las variedades de olivo cultivadas en andalucia. Instituto de Estudios Agrarios, pp 387

    Google Scholar 

  33. Laaribi I, Gouta H, Mezghani Ayachi M, Labidi F, Mars M (2017) Combination of morphological and molecular markers for the characterization of ancient native olive accessions in Central-Eastern Tunisia. Comptes Rendus Biol 340(5):287–297

    Article  Google Scholar 

  34. Laaribi I (2017) Diversité génétique de l’olivier dans le sahel tunisien: caractérisation morphologique, biochimique et moléculaire. Thèse de doctorat en science agronomique, Institut Supérieur Agronomique de Choot Mériem, pp 164

    Google Scholar 

  35. Bongi G, Pallioti A (1994) Olive. In: Schaffer B, Anderson PC (eds) Handbook of environmental physiology of fruit crop. CRC Press Inc., USA, pp 165–182

    Google Scholar 

  36. Bacelar EA, Corriera CM, Moutinho-Pereura JM (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol 24:233–239

    Article  Google Scholar 

  37. Therios I (2009) Olives. Crop Production science. Horticulture 18, Cabi Publishing, pp 409

    Google Scholar 

  38. Aïachi Mezghani M (2014) Olive variety suitability and training system for modern olive growing: plant growth and yield components. In: de Leonardis A (ed) Virgin Olive oil: Production, composition, uses and benefits, for man, Chapter 7, pp 97–119

    Google Scholar 

  39. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  40. Fabbri A, Benelli C (2000) Flower bud induction and differentiation in olive. J Hort Sci Biotech 75:131–141

    Article  Google Scholar 

  41. Zouari I (2011) Développement végétatif et fructifère de six varieties d’olivier (Olea europaea L.) en relation avec les conditions climatiques et le régime hydrique. Projet de Fin d’Etudes, ISA de Chott Mériem, pp 95

    Google Scholar 

  42. Zouari I, Aïachi-Mezghani M, Labidi F (2017) Flowering and heat requirements of four olive varieties grown in the south of Tunisia. Acta hortic 1160:231–236

    Article  Google Scholar 

  43. Alcalá AR, Barranco D (1992) Prediction of flowering time in olive for the Córdoba Olive Collection. HortSci 27:1205–1207

    Article  Google Scholar 

  44. Rallo L, Cuevas J (2010) Fruiting and production. In: Barranco D, Fernández Escobar R, Rallo L (eds) Olive Growing. RIRDC, Australia, pp 115–144

    Google Scholar 

  45. Loussert R, Brousse G (1978) L’olivier, techniques agricoles et productions méditerranéennes. Maisonneuve & Larose (ed), Paris, pp 464

    Google Scholar 

  46. Vernet A, Mousset P (1964) Ecologie de l’olivier, alimentation en eaux. Bulletin de l’Ecole nationale Supérieure d’agriculture de Tunis 3:17–42

    Google Scholar 

  47. Yankovich L, Berthelot P (1947) Rapport sur l’enracinement de l’olivier et des arbres fruitiers en Tunisie. Ann Ser Bot Agro Tunisie 20:109–176

    Google Scholar 

  48. Ben Rouina B, Taamallah H, Trigui A (1997) L’enracinement de l’olivier et ses variations en fonction de la nature du sol en milieu aride. Séminaire international Acquis scientifiques et perspectives pour un développement durable des zones arides, Médenine, Tunisie, pp 182–191

    Google Scholar 

  49. Aïachi Mezghani M, Gouta H, Laaribi I, Labidi F (2016). Leaf area index and Light distribution in Olive Tree Canopies (Olea europaea L.). IJAAR 8(5):60–65

    Google Scholar 

  50. Mariscal MJ, Orgaz F, Villalobos FJ (2000) Modelling and measurement of radiation interception by olive canopies. Agric For Meteor 100:183–197

    Article  Google Scholar 

  51. Villalobos FJ, Orgaz F, Mateos L (1995) Non destructive measurement of leaf area in olive (Olea europaea L.) trees using a gap inversion method. Agric For Meteor 73:29–42

    Article  Google Scholar 

  52. Larbi A, Vasquez S, El-Jendoubi H, Msallem M, Abadia J, Abadia A, Morales F (2015) Canopy light, heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation. Phytosynt Res 123:141–155

    Article  CAS  Google Scholar 

  53. Tombesi A (2006) Planting systems, canopy management and mechanical harvesting. In: Proceedings of the 2nd International Seminar Olivebioteq, Marsala-Mazara del Vallo, Italy, 5–10 November 2006

    Google Scholar 

  54. Cherbiy-Hoffman SU, Hall AJ, Rousseaux MC (2012) Influence of light environment on yield determinants and components in large olive hedgerows following mechanical pruning in subtropics of the southern hemisphere. Sci Hortic 137:36–42

    Article  Google Scholar 

  55. Cherbiy-Hoffman SU, Hall AJ, Rousseaux MC (2013) Fruit, yield and vegetatives responses to photosynthetically active radiation during oil synthesis in olive trees. Sci Hortic 150:110–116

    Article  Google Scholar 

  56. James OD, George RMc, John FG (1985) Modeling the thermal adaptability of the olive. Texas. Agric For Meteor 39:309–327

    Google Scholar 

  57. Masmoudi-Charfi C, Mezghani Ayachi M (2013) Response of Olive Trees to deficit Irrigation Regimes: Growth, Yield and Water Relations. Book Chapter. Book Title: Agricultural Research Updates. Volume 6. Ed. Nova Sciences Publishers. Hauppauge NY. Authors/Editors: Prathamesh Gorawala and Srushti Mandhatri. Pub. Date: 2013. Binding: e-book

    Google Scholar 

  58. Fernández JE, Moreno F (1999) Water use by the olive tree. J Crop Prod 2(2):101–162

    Article  Google Scholar 

  59. Buisson D (1986) Analyse architecturale de quelques espèces d’arbres fruitiers tropicaux. Fruits 41(7,8):477–498

    Google Scholar 

  60. Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Spinger (ed), Berlin, pp 441

    Google Scholar 

  61. Aïachi Mezghani M (2009) Déterminisme de la diversité caulinaire et radiculaire chez l’olivier (Olea europaea L.) et modélisation de la croissance: Approche morphogénétique. Thèse de Doctorat en Sciences Agronomiques, Institut National Agronomique de Tunisie, pp 352

    Google Scholar 

  62. Lavee S (1997) Biologie et physiologie de l’olivier. In: Plaza et Janes (eds) Encyclopédie Mondiale de l’olivier, Egedsa, Sadabell, Espagne, pp 61–110

    Google Scholar 

  63. Lavee S, Rallo L, Rapoport H, Troncoso A (1996) The floral biology of the olive: effect of flower number, type and distribution on fruit set. Sci Hortic 66:149–158

    Article  Google Scholar 

  64. Castillo-Lanque FJ, Rapoport H (2011) Relation between reproductive behavior and new shoot development in 5-year-old branches of olive tree (Olea europaea L.). Trees 25:823–828

    Article  Google Scholar 

  65. Chalmers DJ, Mitchell PD, Vanheek L (1981) Control of peach-tree growth and productivity by regulated water-supply, tree density and summer pruning. J Am Soc Hortic Sci 106:307–312

    Article  Google Scholar 

  66. Rapoport HF, Hammami SBM, Martins P, Perez-Priego O, Orgaz F (2012) Influence of water deficits at different times during olive tree inflorescence and flower development. Environ Exper Bot 77:227–233

    Article  Google Scholar 

  67. Rapoport HF, Martins PC (2006) Flower quality in the olive: broadening the concept. Proceedings of the 2nd International Seminar Olivebioteq, Special Seminars and invited lectures, Marsala-Mazara del Vallo, Italy, 5–10 November 2006

    Google Scholar 

  68. Aïachi Mezghani M, Sahli A, Grati N, Gaaliche B, Laaribi I (2014) Effects of two irrigations regimes on olive trees cultivated in arid region of Tunisia: growth, yield responses and water relations. Eur sci J 10(15):468–489

    Google Scholar 

  69. Connor DJ, Fereres E (2005) The physiology of adaptation and yield expression in Olive. Hortic Rev. Jules Janick (Ed) 31:155–229

    CAS  Google Scholar 

  70. Mechri B, Issaoui M, Echbili A, Chehab H, Ben Mariem F, Braham M, Hammami M (2009) Olive orchard amended with olive mill wastewater: effects on olive fruit and olive oil quality. J Hazard Mater 172:1544–1550

    Article  CAS  Google Scholar 

  71. Boussadia O, Steppe K, Zgallai H, Ben El Hadj S, Braham M, Lemeur R, Van Labeke MC (2010) Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘ Meski ‘ and ‘ Koroneiki ‘. Sci Hort 123:336–342

    Article  CAS  Google Scholar 

  72. Tekaya M, Mechri B, Cheheb H, Attia F, Chraief I, Ayachi Mezghani M, Boujneh D, Hammami M (2014) Changes in the profiles of minerals elements, phenols, tocopherols and soluble carbohydrates of olives fruit following nutrient fertilization. Food Sci Technol 59:1047–1053

    CAS  Google Scholar 

  73. Zouari I, Aïachi-Mezghani M, Mechri B, Labidi F, Attia F, Boujneh D, Chehab H (2014) The effect of foliar fertilization on carbohydrates status of ‘Chemlali’ olive (Olea europaea L.) leaves cultivated under rain-fed conditions. In: Proceedings of Olivebioteq 2014, 4th international seminar, Amman (Jordan), 3rd–6th November 2014

    Google Scholar 

  74. Masmoudi Charfi C (2017) Characterization of a varietal olive collection-Water use efficiency. Ministry of Agriculture, Water resources and Fishery, pp 93

    Google Scholar 

  75. Gucci R, Cantini C (2000) Pruning and training systems for modern olive growing. Csiro Publishing, Australia, pp 144

    Google Scholar 

  76. Pastor Munõz M (1989) La taille de l’olivier. Conseil oléicole mondial (ed), Madrid, pp 111

    Google Scholar 

  77. Aïachi Mezghani M, Masmoudi Charfi C, Gouia M, Labidi F (2012) Vegetative and reproductive behaviour of some olive tree cultivars (Olea europaea L.) under deficit irrigation regimes in semi-arid conditions of Central Tunisia. Sci Hortic 146:143–152

    Article  Google Scholar 

  78. Pastor Munõz M, Humanes J (1990) Plantation density experiments of non-irrigated groves in Andalucia. Acta Hortic 286:287–289

    Article  Google Scholar 

  79. Ben Rouina B, Gargouri K, Bentaher H, Ayadi M, Ouled Amor A, Jilani S, Soua N, Jribi A (2008) Epandage des margines fraîches sur les terres agricoles. Rapport projet CFC/IOOC/0437pp présentée à la Journée Valorisation agronomique des sous produits des huileries, 30 Octobre 2008, Zarzis

    Google Scholar 

  80. Gargouri K, Rigane H, Arous I, Touil F (2013) Evolution of soil organic in an olive orchard under arid climate. Sci Hortic 152:102–108

    Article  CAS  Google Scholar 

  81. Xiloyannis C, Armanda Martinez R, Kosmas C, Favia M (2008) Semi-intensive orchards on slopung land: requiring good land husbandry for future development. J Environ Manag 89:110–119

    Article  Google Scholar 

  82. Gucci R, Caruso G (2011) Environmental stresses and sustainable olive growing. Acta Hortic 924:19–30

    Article  Google Scholar 

  83. Gomez-Munoz B, Valero-Valenzuela JD, Hinojosa MB, García-Ruiz R (2016) Management of tree pruning residues to improve soil organic carbon in olive groves. Eur J Soil Biol 74:104–113

    Article  CAS  Google Scholar 

  84. Bargougui L, Guergueb Z, Chaieb M, Braham M, Mekki A (2018). Agro-physiological and biochemical responses of Sorghum bicolor in soil amended by olive mill wastewater. Agri Water Manag 212:60–67

    Google Scholar 

  85. Chehab H, Tekaya M, Gouiaa M, Mahjoub Z, Laamari S, Sfina H, Chihaoui B, Boujnah D, Mechri B (2018) The use of legume and grass cover crops induced changes in ion accumulation, growth and physiological performance of young olive trees irrigated with high-salinity water. Sci Hortic 232:170–174

    Google Scholar 

  86. Paredes C, Ceggara J, Roing A, Sanchez-Monedero MA, Bernal MP (1999) Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresour Technol 67:111–115

    Article  CAS  Google Scholar 

  87. Meftah O, Guergueb Z, Braham M, Sayadi S, Mekki A (2019) Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agri Wat Manag 2012:119–125

    Article  Google Scholar 

  88. Garcia C, Hernandez T, Costa F (1994) Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Bioch 26:457–466

    Article  Google Scholar 

  89. Zenjari B, Nejmeddine A (2001) Impact of spreading olive mill wastewater on soil characteristics: laboratory experiments. Agron 21:749–755

    Article  Google Scholar 

  90. Piotrowska A, Iamarino G, Antonietta Rao M, Gianfreda L (2005) Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol Biochem 38:600–610

    Article  CAS  Google Scholar 

  91. Saviozzi A, Yevi Minizir R, Riffaldi R, Lupetto A (1991) Effeti dello spandimento di acqua di végétazioni sul tereno agrario. Agro Chim 35:135–148

    CAS  Google Scholar 

  92. Tardioli S, Banne ETG, Santori F (1997) Species-specific selection on soil fungal population after olive mill waste-water treatment. Chemoshpere 34:2329–2336

    Article  Google Scholar 

  93. Mekki A, Aloui F, Sayadi S (2017) Influence of biowastes compost amendment on soil organic carbon storage under arid climate. J Air Waste Manag Ass 69(7). https://doi.org/10.1080/10962247.2017.1374311

  94. Fernández JE, Palomo MJ, Diaz-Espejo A, Girón IF (2003) Influence of partial soil wetting on water relation parameters of the olive tree. Agron 23:545–552

    Article  Google Scholar 

  95. Grattan SR, Berenguer MJ, Connell JH, Polito VS, Vossen PM (2006) Olive oil production as influenced by different quantities of applied water. Agric Water Manag 85:133–140

    Article  Google Scholar 

  96. Ben Ahmed C, Ben Rouina B, Boukhris MM (2007) Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Sci Hortic 113:267–277

    Article  Google Scholar 

  97. Iniesta F, Testi L, Orgaz F, Villalobos FJ (2009) The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur J Agron 25:258–269

    Article  Google Scholar 

  98. Masmoudi Charfi C, Ayachi Mezghani M, Gouia M, Laabidi F, Ben Reguaya S, Ouled Amor A, Bousnina M (2010) Water relations of olive trees cultivated under deficit irrigation regimes. Sci Hortic 125:573–578

    Article  Google Scholar 

  99. Aïachi Mezghani M, Gouta H, Sahli A, Labidi F, Zouari I, Laaribi I, Kammoun N (2017) Effects of irrigation on yield and oil quality of different olive varieties grown in semi-arid conditions of Tunisia. Acta Hortic 1160:391–395

    Article  Google Scholar 

  100. Aïachi Mezghani M, Mguidiche A, Allouche Khebour F, Zouari I, Attia F, Provenzano G (2019). Water status and yield response to deficit irrigation and fertilization of three olive oil varieties under the semi-arid conditions of Tunisia. Sustainability 11(4812). https://doi.org/10.3390/su11174812

  101. Galindo A, Collado-Gonzalza J, Gninan I, Corell A, Martin-Palomo MJ, Giron IF, Rodriguez P, Cruz ZN, Memmi H, Carbonell-Barrachina AA, Hernandez F, Torrecillas A, Moriana A, Lopez-Perez D (2017) Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semi-arid agrosystems. Agric water Manag 202:311–324

    Article  Google Scholar 

  102. Fernández-Escobar R (2010) Fertilization. In: Barranco D, Fernandez-Escobar R, Rallo L (eds) Olive Growing. RIRDC, Australia, pp 267–297

    Google Scholar 

  103. Sghaier A, Perttunen J, Sievaènen R, Boujnah D, Ouessar M, Ben Ayed R, Naggaz K (2019) Photosynthetical activity modelisation of olive trees growing under drought conditions. Sci Rep (9). https://doi.org/10.1038/s41598-019-52094-9

  104. Goldhamer DA (1999) Regulated deficit irrigation for California canning olives. Acta Hortic 474:369–372

    Article  Google Scholar 

  105. Fereres E (1995) El riego del olivar. Proceedings of the VII Simposio Centifico Tecnico Expoliva 95, pp 18

    Google Scholar 

  106. Rapoport H, Fabbri A, Sebastiani L (2016) Olive biology. In: The olive tree genome Rugini et al (ed) Springer International Publishing, pp 13–25

    Google Scholar 

  107. Palomo MJ, Moreno F, Fernández JE, Díaz Espejo A, Giron IF (2002) Determining water consumption in olive orchards using the water balance approach. Agric Water manag 55:15–35

    Article  Google Scholar 

  108. Fernández JE (2006) Irrigation management in olive. In: Proceedings of the 2nd International Seminar Olivebioteq, Seminars and invited lectures, 5–10 November 2006, Marsala-Mazara del Vallo, Italy, pp 295–305

    Google Scholar 

  109. Bchir A, Lemeur R, Ben Mariem F, Boukherissa N, Gariani W, Haifa Sbaii H, Ben Dhiab A, Ben Mansour Gueddes S, Braham M (2019) Estimation and comparison of reference evapotranspiration using different methods to determine olive trees irrigation schedule in different bioclimatic stages of Tunisia. Braz Jour Biol Sci 9:615–628

    Article  Google Scholar 

  110. Allen R, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. Irrig and drain paper No 56, FAO, Rom

    Google Scholar 

  111. Patumi M, D’Andria R, Marsilio V, Fontanazza G, Morelli G, Lanza B (2002) Olive and olive oil quality after intensive monocone olive growing (Olea europaea L. cv. ‘Kalamata’) in different irrigation regimes. Food Chem 77:27–34

    Article  CAS  Google Scholar 

  112. Tognetti R, D’Andria R, Lavini A, Morelli G (2006) The effect of deficit irrigation on crop yield and vegetative development of Olea europaea L. (cvs.Frantoio and Leccino). Eur J Agron 25:356–364

    Article  Google Scholar 

  113. Melgar JC, Mohamed Y, Navarro C, Parra MA, Benlloch M, Fernández-Escobar R (2008) Long-term growth and yield responses of olive trees to different irrigation regimes. Agric Water Manag 5:968–972

    Google Scholar 

  114. Ghrab M, Gargouri K, Bentaher H, Chatzoulakis K, Ayadi M, Ben Mimoun M, Masmoudi MM, Ben Mechlia N, Psarras G (2013) Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate. Agric Water Manag 123:1–11

    Article  Google Scholar 

  115. Abboud S, Dbara S, Abidi W, Braham M (2019) Differential agro-physiological responses induced by partial root-zone drying irrigation in olive cultivars grown in semi-arid conditions. Environ Expert Bot 167. https://doi.org/10.1016/j.envexpbot.2019.103863

  116. Bedbabis S, Ferrara G, Ben Rouina B, Boukhris MM (2010) Effects of irrigation with wastewater on olive tree growth, yield and leaf mineral elements at short term. Sci Hortic 126:345–350

    Article  CAS  Google Scholar 

  117. Ben Ahmed C, Megdich S, Ben Rouina B, Boukhris M, Ben Abdullah F (2012) Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. J Envir Manag 113:538–544

    Article  CAS  Google Scholar 

  118. Zarrouk M, Cherif A (1981) Effect of sodium chloride on lipid content of olive trees (Olea europaea L.). Zeitschrift fur Pflanznphysiol 105:85–92

    Article  CAS  Google Scholar 

  119. Rejeb S (1992) Irrigation d’un sundangrass avec des eaux usées traitées. II-Risque de contamination par les micro-éléments. Fourrages 130:181–190

    Google Scholar 

  120. Zaanouni N, Mariem Gharssallaoui M, Eloussaief M, Gabsi S (2018) Heavy metals transfer in the olive tree and assessment of food contamination risk. Environ Sci Poll Res 26:1–15

    Google Scholar 

  121. Mekki A, Chaouch A, Bargougui L, Chaieb M, Amar F (2019) Ecophysiological responses of olive trees (Olea Europaea L.) hybrid varieties in soil amended with olive mill waste waters. Jour Wat Sci Engin 1:1–10

    Google Scholar 

  122. Fernández-Escobar R (2007) Fertilization. Production techniques in olive growing. Spain, International Olive Council, Madrid, pp 145–168

    Google Scholar 

  123. Fernández-Escobar R, Guerreiro M, Benlloch M, Benlloch-Gonzàlez M (2016) Symtoms of nutrient deficiencies in young olive trees and leaf nutrient concentration at which symptoms appear. Sci Hortic 209:279–285

    Article  CAS  Google Scholar 

  124. Aïachi Mezghani M, Ayadi M, Attia F, Zouari I, Labidi F, Attia L (2018) Effects of irrigation and fertigation applied during a long–period on tree growth, yield and oil quality responses of olive varieties. Acta Hort 1199(39):255–260

    Article  Google Scholar 

  125. Erel R, Yermiyahu U, Opstal JV, Ben-Gal A, Schwartz A, Dag A (2013) The importance of olive (Olea europaea L.) tree nutritional status on its productivity. Sci Hortic 159:8–18

    Article  CAS  Google Scholar 

  126. Zouari I (2014) Potentialités agronomiques, statut minéral et carboné de la variété Chemlali (Olea europaea L.) en réponse à l’application de fertilisants foliaires. Mémoire de Master, ISA de Chott Mériem, pp 160

    Google Scholar 

  127. Zouari I, Aïachi-Mezghani M, Labidi F, Ben Dhiab A, Attia F, Mechri B, Hammami M (2017) Effect of foliar fertilization on flowering of Olea europaea L. ‘Chemlali.’ Acta Hortic 1160:151–159

    Article  Google Scholar 

  128. Rodrigues M, Ferreira IQ, Claro AM, Arrobas M (2011) Fertilizer recommendations for olive based upon nutrients removed in crop and pruning. Sci Hortic 142:205–211

    Article  CAS  Google Scholar 

  129. Therios IN, Sakellariadis SD (1988) Effects of Nitrogen form on growth and mineral composition of olive plants (Olea europaea L.). Sci Hortic 35:167–177

    Article  CAS  Google Scholar 

  130. Therios I (2006) Mineral nutrition of olive trees. In: Proceedings of the 2nd International Seminar Olivebioteq, Seminars and invited lectures, Marsala-Mazara del Vallo, Italy, 5–10 November 2006

    Google Scholar 

  131. I.O (2017) Techniques de plantation de l’olivier. Document technique, p 8

    Google Scholar 

  132. Fernández JE (2014) Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ Exper Biol 103:158–179

    Google Scholar 

  133. Arquero O, Barranco D, Benlloch M (2006) Potassium starvation increases stomatal conductance in olive trees. HortSci 41:433–436

    Article  CAS  Google Scholar 

  134. Fernández-Escobar R (2004) Fertilizacion. In: Barranco D, Fernandez-Escobar R, Rallo L (eds) El cultivo del olivo. Mundi-Prensa, Madrid, pp 287–320

    Google Scholar 

  135. Parra MA, Fernández Escobar R, Navarro C, Arquero O (2003) Los suelos y la fertilizacion del olivar cultivado en zonas calcareas. Mundi-Prensa, Madrid

    Google Scholar 

  136. Nyomora A, Brown P, Pinney K, Polito V (2000) Foliar application of boron to almond trees affects pollen quality. J Am Soc Hortic Sci 126:291–296

    Google Scholar 

  137. Larbi A, Gargouri K, Ayadi M, Dhiab A, Msallem M (2011) Effect of foliar boron application on growth production and oil quality of olive tree conducted under a high-density planting system. J Plant Nutrit 34:2083–2094

    Article  CAS  Google Scholar 

  138. Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Roemheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  139. Perica S, Brown PH, Connell JH, Nyomora AMS, Dordas C, Hu H, Stangoulis J (2001) Foliar boron application improves flower fertility and fruit set of olive. HortSci 36(4):714–716

    Article  CAS  Google Scholar 

  140. Chatzissavvidis C, Therios L (2010) Response of four olive (Olea europaea L.) cultivars to six B concentrations: growth performance, nutrient status and exchange parameters. Sci Hortic 127:29–38

    Article  CAS  Google Scholar 

  141. Mengel K (2002) Alternative or complementary role of foliair supply in mineral nutrition. Acta Hortic 594:33–47

    Article  CAS  Google Scholar 

  142. Zouari I, et al (2020) Mineral and carbohydrates changes in leaves and roots of olive trees receiving biostimulants and foliar fertilizers. South Afric Jour Bot 135:18–28

    Google Scholar 

  143. Ksontini I, Jardak T, Zeghal N (2010) Baccilus Thuringiensis, Delmathrine and Spinosad side-effects on three trichogramma species. Bull Insect 63(1):31–37

    Google Scholar 

  144. Blibech I, Ksontini M, Jardak T, Bouaziz M (2015) Effects of insecticides on trichogramma Parasitoids used in biological control against Prays Olea. Insect. Pest Advances Chem. Eng Sci 5:362–372

    Article  CAS  Google Scholar 

  145. https://doee.dc.gov/service/integrated-pest-management

  146. https://lindenhills.coop/departments/produce

  147. Jardak T (1980) Etudes bioécologiques du Prays Oleae BERN (Lepidoptera, hyponomentidaae) et de ses parasites oophages du genre Trichogramma (Hypmenotidae, trochogrammatidae), essais d’utilisation et lutte biologique Thèse de 3éme cycle, Aix-Marseille, pp 5–42

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Agriculture Ministry and also Ministry of Education and Higher Research of Tunisia for their financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aïachi Mezghani, M., Laaribi, I., Zouari, I., Mguidich, A. (2021). Sustainability and Plasticity of the Olive Tree Cultivation in Arid Conditions. In: Khebour Allouche, F., Abu-hashim, M., Negm, A.M. (eds) Agriculture Productivity in Tunisia Under Stressed Environment. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-74660-5_3

Download citation

Publish with us

Policies and ethics