Skip to main content

Fracture in Nano-Structures

  • Chapter
  • First Online:
Mechanical Properties of Nanomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 710 Accesses

Abstract

Detailed description of the basic concept of fracture in bulk material can be found in earlier works of the author (Pelleg, 2013, 2014). Following this section comprehensive consideration to nanomaterial is presented, discussing the various fracture types including those of static, time dependent and fatigue related observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.R. Akbarpour, E. Salahi, F.A. Hesari, H.S. Kim, A. Simchi, Mater. Des. 52, 881 (2013)

    Article  CAS  Google Scholar 

  • H. Alvandia, K. Farmanesh, Procedia Mater. Sci. 11, 17 (2015)

    Article  Google Scholar 

  • D.C. Baek and S.B. Lee, Procedia Eng. 10, 3006 (2011).

    Google Scholar 

  • E. Calvié, L.J. Pottuz, C. Esnouf, P. Clément, V. Garnier, J. Chevalier, Y. Jorand, A. Malchère, T. Epicier, K.M. Varlot, J. Eur. Cer. Soc., 32, 2067 (2012).

    Google Scholar 

  • L. Carneiro, X. Wang, Y. Jiang, Inter. j. Fatigue 134, 105469 (2020)

    Article  CAS  Google Scholar 

  • G.E. Dieter, D. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1986).

    Google Scholar 

  • C. Gu, J. Lian, Z. Jiang, Q. Jiang, Scripta Mater. 54, 579 (2006)

    Article  CAS  Google Scholar 

  • J. Gubicza, H.-Q. Bui, F. Fellah, G.F. Dirras, J. Mater. Res. 24, 217 (2009)

    Article  CAS  Google Scholar 

  • T. Hanlon, Y.N. Kwon, S. Suresh, Scripta Mater., 49, 675 (2003).

    Google Scholar 

  • T. Hanlon, E.D. Tabachnikova, S. Suresh, Inter. j. Fatigue 27, 1147 (2005)

    Article  CAS  Google Scholar 

  • H.W. Huang, Z.B. Wang, J. Lub, K. Lu, Acta Mater. 87, 150 (2015)

    Article  CAS  Google Scholar 

  • K. Kadau, P.S. Lomdahl, B.L. Holian, T.C. Germann, D. Kadau, P. Entel, D.E. Wolf, M. Kreth, F. Wester Hoff, Met. Mater. Trans., A 35, 2719 (2004).

    Google Scholar 

  • T. Kondo, H. Hirakata, M. Sakihara, K. Minoshima, Procedia. Mater. Sci. 3, 544 (2014)

    CAS  Google Scholar 

  • K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang, Acta Mater. 51, 387 (2003)

    Article  CAS  Google Scholar 

  • X. Li, M. Dao, C. Eberl, A.M. Hodge, H. Gao, MRS Bull. 41, 298 (2016)

    Article  Google Scholar 

  • H. Mahboob, S.A. Sajjadi, S.M. Zebarjad, Powder Metall. 54, 148 (2011)

    Article  CAS  Google Scholar 

  • V. Maier, B. Merle, M. Göken, K. Durst, J. Mater. Res. 28, 1177 (2013)

    Article  CAS  Google Scholar 

  • R.A. Mirshams, C.H. Xiao, S.H. Wang, W.M. Yin, Mater. Sci. Eng., A 315, 21 (2001)

    Google Scholar 

  • K. Niihara, J. Ceram. Soc. of Jpn 99, 974 (1991)

    Article  CAS  Google Scholar 

  • S. Panda, K. Dash, B.C. Ray, Bull. Mater. Sci. 37, 227 (2014)

    Article  CAS  Google Scholar 

  • M. Parchovianský, D. Galusek, M. Michálek, P. Švančárek, M. Kašiarová, J. Dusza, M. Hnatko, Cer. Inter. 40, 1807 (2014)

    Article  Google Scholar 

  • J. Pelleg, Mechanical Properties of Materials (Springer, 2013)

    Google Scholar 

  • J. Pelleg, Mechanical Properties of Ceramics (Springer, 2014)

    Google Scholar 

  • E.W. Qin, L. Lu, N.R. Tao, K. Lu, Scripta Mater. 60, 539 (2009)

    Article  CAS  Google Scholar 

  • S. Qu, C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, Q.S. Zang, Z.F. Zhang, Mater. Sci. Eng., A 475, 207 (2008).

    Google Scholar 

  • M.P. Reddy, F. Ubaid, R.A. Shakoor, G. Parande, V. Manakari, A.M.A. Mohamed, M. Gupta, Mater. Sci. Eng., A 696, 60 (2017).

    Google Scholar 

  • M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, M. Gupta, Mater., Progr., Nat. Sci.: Mater. Int. 27, 606 (2017).

    Google Scholar 

  • B. Roy, R. Kumar, J. Das, Mater. Sci. Eng., A 631, 241(2015).

    Google Scholar 

  • M. Sarfarazi, S.K. Ghosh, Eng. Fract. Mech. 27, 257 (1987)

    Article  Google Scholar 

  • P. Sarobol, A.C. Hall, D.A. Urrea, M.E. Chandross, J.D. Carroll, B.L. Boyce, W.M. Mook, P.G. Kotula, B.B. McKenzie, D.C. Bufford, Sandia Report, September 2014, p. 1

    Google Scholar 

  • P. Sarobol, M. Chandross, J.D. Carroll, W.M. Mook, D.C. Bufford, B.L. Boyce, P.G. Kotula, B.B. McKenzie, K. Hattar, A.C. Hall, in International Thermal Spray Conference. May 11, 2015. Long Beach, CA.

    Google Scholar 

  • M.L. Saucedo-Muñoza, S.I. Komazaki, T. Hashida, V.M. López-Hirata, Revista de Metallurgica 51, 1 (2015).

    Google Scholar 

  • R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Acta Mater. 51, 5159 (2003)

    Article  CAS  Google Scholar 

  • V. Sklenicka, K. Kucharova, M. Pahutova, G. Vidrich, M. Svoboda, H. Ferkel, Rev. Adv. Mater. Sci. 10, 171 (2005)

    CAS  Google Scholar 

  • M. Taya, R.J. Arsenault, Metal Matrix Composites-Thermomechanical Behavior (Pergamon Press, New York, 1989).

    Google Scholar 

  • H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto, A. Vinogradov, Acta Mater. 59, 7060 (2011)

    Article  CAS  Google Scholar 

  • M. Vaghari, G.R. Khayati, S.A.J. Jahromi, J. Ultrafine Grained and Nanostruct. Mater., 52, 210 (2019).

    Google Scholar 

  • G. Wang, Z. Jiang, H. Zhang, J. Lian, J. Mater. Res. 23, 2238 (2008)

    Article  CAS  Google Scholar 

  • Z. Wang, Y. Guan, L. Li, L. Zhu, Metals 9, 1 (2019)

    Google Scholar 

  • T.P. Weihs, J.B. Pethica: Monitoring time-dependent deformation in small volumes, in Thin Films: Stresses and Mechanical Properties III, edited by W.D. Nix, J.C. Bravman, E. Arzt and L.B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 325.

    Google Scholar 

  • X.S. Yang, Y.J. Wang, H.R. Zhai, G.Y. Wang, Y.J. Su, L.H. Dai, S. Ogata, T.Y. Zhang, J. Mech. Phys. Solids, 94, 191(2016).

    Google Scholar 

  • W.M. Yin, S.H. Wang, R. Mirshams and C.H. Xiao, Mater. Sci. Eng., A 301, 18 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Pelleg .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelleg, J. (2021). Fracture in Nano-Structures. In: Mechanical Properties of Nanomaterials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-74652-0_9

Download citation

Publish with us

Policies and ethics