Skip to main content

Cyclic Deformation-Fatigue

  • Chapter
  • First Online:
Mechanical Properties of Nanomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Ultrafine grained Al 6061 processed by high-pressure torsion (HPT) at room temperature was tested for the fatigue properties. The HPT processing leads to the formation of a microstructure with an average grain size of 170 nm. The fatigue behavior of the UFG material and the fracture surface is considered in terms of low and high cycle fatigue. The microstructure consists of a very homogeneous grain structure and thus in turn it is expected to show a homogeneous resistance to crack nucleation. It is suggested that the very homogeneous grain structure so obtained can be an approach for the improvement of the low cycle fatigue (LCF) and the high cycle fatigue (HCF) properties of Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.M. Bodhankar, C. Gurada, S. Shinde, H. Muthurajan, V. Kumar, J. Mater. Sci. Surf. References

    Google Scholar 

  • T. Hanlon, E.D. Tabachnikova, S. Suresh, Int. J. Fatigue 27, 1147 (2005)

    Article  CAS  Google Scholar 

  • J.E. Hatch, Aluminium: Properties and Physical Metallurgy, (ASM International, Materials Park, OH, USA, 1984a), p. 636

    Google Scholar 

  • J.E. Hatch, Aluminum: Properties and Physical Metallurgy, (ASM International, Materials Park, OH, USA, 1984b), p. 636

    Google Scholar 

  • J. Hua, J. Zhang, Z. Jianga, X. Ding, Y. Zhang, S. Hana, J. Sun, J. Lian, Mater. Sci. Eng. A 651, 999 (2016)

    Article  Google Scholar 

  • O. Kraft, P. Wellner, M. Hommel, R. Schwaiger, E. Arzt, Z. Metalkd. 93, 392 (2002)

    Article  CAS  Google Scholar 

  • L. Kunz, L. Collini, Frattura Ed Integrità Strutturale 19, 61 (2012)

    Google Scholar 

  • J.-A. Lee, D.-H. Lee, M.-Y. Seok, I.-C. Choi, H.-N. Han, T.-Y. Tsui, U. Ramamurty, J.-I. Jang, Scripta Mater. 140, 31 (2017)

    Article  CAS  Google Scholar 

  • C.J. Lee, R. Murakami, C.M. Suh, Fatigue properties of aluminum alloy (A6061–T6) with ultrasonic nanocrystal surface modification. Int. J. Modern Phys. B 24, 2512 (2010)

    Article  CAS  Google Scholar 

  • S.-P. Liu, K. Ando, J. Chinese Ins. Eng. 27, 395 (2004)

    Article  CAS  Google Scholar 

  • J. Long, Q. Pan, N. Tao, L. Lu, Mater. Res. Let. 6, 456 (2018)

    Article  CAS  Google Scholar 

  • P. Lukáš, L. Kunz, L. Navrátilová, Kovove Mater. 50, 407 (2012)

    Google Scholar 

  • R. Murakami, The University of Tokushima, Advanced Material Laboratory in Kyungpook National University

    Google Scholar 

  • M. Murashkin, I. Sabirov, D. Prosvirnin, I. Ovid’ko, V. Terentiev, R. Valiev, S. Dobatkin, Metals 5, 578 (2015)

    Article  Google Scholar 

  • M.C. Murphy, Fatigue Eng. Mater. Struct. 4, 199 (1981)

    Article  CAS  Google Scholar 

  • K. Niihara, J. Cer. Soc. Japan 99, 974 (1991)

    Article  CAS  Google Scholar 

  • J. Pelleg, Mechanical Properties of Materials (Springer, 2013), p. 37

    Google Scholar 

  • A. Pineau, A.A. Benzerga, T. Pardoen, Acta Mater. 107, 508 (2016)

    Article  CAS  Google Scholar 

  • J.J. Roa, I. Sapezanskaia, G. Fargas, .R. Kouitat, A. Redjaïmia, A. Mateo, Mater. Sci. Eng. A 713, 287 (2018)

    Google Scholar 

  • T. Sumigawa, T. Kitamura, The Transmission Electron Microscope, ed. by Maaz Khan, (2012), p. 355

    Google Scholar 

  • D. Tabor, Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  • H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto, A. Vinogradov, Acta Mater. 59, 7060 (2011)

    Article  CAS  Google Scholar 

  • Z. Xiong, T. Naoe, T. Wan, M. Futakawa, K. Maekawa, Procedia Eng. 101, 552 (2015)

    Article  CAS  Google Scholar 

  • G.P. Zhang, K.H. Sun, B. Zhang, J. Gong, C. Sun, Z.G. Wang, Mater. Sci. Eng. A 483–484, 387 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Pelleg .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelleg, J. (2021). Cyclic Deformation-Fatigue. In: Mechanical Properties of Nanomaterials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-74652-0_8

Download citation

Publish with us

Policies and ethics