Skip to main content

Drive Towards 6G

  • Chapter
  • First Online:
Enabling 6G Mobile Networks

Abstract

As fifth-generation (5G) mobile networks are being rolled out, the telecom industry and academia are now coordinating the 6G research effort towards defining the requirements and use cases for beyond 5G (B5G) or so-called sixth-generation (6G) mobile networks. 6G envisages an evolutionary communication platform based on complete network softwarisation, inclusive communications mediums including satellite, and ultra-dense networks to cater for the market demands that requires ultra-high speeds, tactile response time, and lower cost of network ownership by 2030. This chapter provides an overview of the use cases for B5G/6G systems, including holographic telepresence, digital twin, connected robotics, distributed artificial intelligence, and blockchain technologies. It further reviews the current standardisation and deployment status of 5G technology as a baseline and the drive towards 6G by identifying key enabling technologies, system requirements, and an overview on global B5G/6G activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITU. (2020). ITU completes evaluation for global affirmation of IMT-2020 technologies. Press Release. https://www.itu.int/en/mediacentre/Pages/pr26-2020-evaluation-global-affirmation-imt-2020-5g.aspx. Accessed 15 Dec 2020.

  2. Saghezchi, F. B. et al. (2015, May 8). Drivers for 5G. Fundamentals of 5G Mobile Networks, 1–27. https://doi.org/10.1002/9781118867464.ch1.

  3. Morgado, K. M., Huq, S., Mumtaz, S., & Rodriguez, J. (2018). A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digital Communications and Networks, 4(2), 87–97. https://doi.org/10.1016/j.dcan.2017.09.010

    Article  Google Scholar 

  4. Sucasas, V., et al. (2015). Efficient privacy preserving security protocol for VANETs with sparse infrastructure deployment (pp. 7047–7052). 2015 IEEE International Conference on Communications (ICC). https://doi.org/10.1109/ICC.2015.7249450

    Book  Google Scholar 

  5. Saghezchi, F. B., Saghezchi, F. B., Nascimento, A., & Rodriguez, J. (2015). Game-theoretic based scheduling for demand-side management in 5G smart grids (pp. 8–12). 2015 IEEE Symposium on Computers and Communication (ISCC). https://doi.org/10.1109/ISCC.2015.7405446

    Book  Google Scholar 

  6. Saghezchi, F. B., et al. (2019). Machine learning to automate network segregation for enhanced security in industry 4.0. In V. Sucasas, G. Mantas, & S. Althunibat (Eds.), Broadband Communications, Networks, and Systems (BROADNETS 2018), Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 263, pp. 149–158). Springer. https://doi.org/10.1007/978-3-030-05195-2_15

    Chapter  Google Scholar 

  7. Fettweis, G. P. (2014). The tactile internet: Applications and challenges. IEEE Vehicular Technology Magazine, 9(1), 64–70.

    Article  Google Scholar 

  8. Viswanathan, H., & Mogensen, P. E. (2020). Communications in the 6G era. IEEE Access, 8, 57063–57074. https://doi.org/10.1109/ACCESS.2020.2981745

    Article  Google Scholar 

  9. Liu, G., et al. (2020). Vision, requirements and network architecture of 6G mobile network beyond 2030. China Communications, 17(9), 92–104. https://doi.org/10.23919/JCC.2020.09.008

    Article  Google Scholar 

  10. Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142. https://doi.org/10.1109/MNET.001.1900287

    Article  Google Scholar 

  11. Zheng, Z., Xie, S., Dai, H.-N., Chen, X., & Wang, H. (2018). Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services, 14(4), 352–375. https://doi.org/10.1504/IJWGS.2018.095647

    Article  Google Scholar 

  12. Samsung Research. (2020). 6G the next hyper-connected experience for all (White Paper). Accessed 24 Jan 2021 [Online]. Available: https://research.samsung.com/next-generation-communications

  13. Ethics guidelines for trustworthy AI | Shaping Europe’s digital future. The EC’s High-Level Expert Group on AI (2019). https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai. Accessed 25 Jan 2021.

  14. Busari, S. A., Saghezchi, F. B., Mumtaz, S., & Rodriguez, J. (2020, September). Multi-objective hybrid scheduler enabling efficient resource management for 5G UDN. In IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, Vol. 2020. https://doi.org/10.1109/CAMAD50429.2020.9209298.

  15. Barakabitze, A., Ahmad, R., Mijumbi, A., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984. https://doi.org/10.1016/j.comnet.2019.106984

    Article  Google Scholar 

  16. Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J. J., Lorca, J., & Folgueira, J. (2017). Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Communications Magazine, 55(5), 80–87. https://doi.org/10.1109/MCOM.2017.1600935

    Article  Google Scholar 

  17. Saghezchi, F. B., Radwan, A., Rodriguez, J., & Dagiuklas, T. (2013). Coalition formation game toward green mobile terminals in heterogeneous wireless networks. IEEE Wireless Communications, 20(5), 85–91. https://doi.org/10.1109/MWC.2013.6664478

    Article  Google Scholar 

  18. Saghezchi, F. B., Radwan, A., & Rodriguez, J. (2017). Energy-aware relay selection in cooperative wireless networks: An assignment game approach. Ad Hoc Networks, 56. https://doi.org/10.1016/j.adhoc.2016.12.001

  19. Alam, M., Yang, D., Huq, K., Saghezchi, F., Mumtaz, S., & Rodriguez, J. (2016). Towards 5G: Context aware resource allocation for energy saving. Journal of Signal Processing Systems, 83(2). https://doi.org/10.1007/s11265-015-1061-x

  20. Saghezchi, F. B., Radwan, A., Rodriguez, J., & Taha, A.-E. M. (2014). Coalitional relay selection game to extend battery lifetime of multi-standard mobile terminals. https://doi.org/10.1109/ICC.2014.6883369

    Book  Google Scholar 

  21. Busari, S. A., Huq, K. M. S., Mumtaz, S., Dai, L., & Rodriguez, J. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials, 20(2), 836–869. https://doi.org/10.1109/COMST.2017.2787460

    Article  Google Scholar 

  22. Mumtaz, S., Jornet, J. M., Aulin, J., Gerstacker, W. H., Dong, X., & Ai, B. (2017). Terahertz communication for vehicular networks. IEEE Transactions on Vehicular Technology, 66(7), 5617–5625. https://doi.org/10.1109/TVT.2017.2712878

    Article  Google Scholar 

  23. Cacciapuoti, A. S., Caleffi, M., Tafuri, F., Cataliotti, F. S., Gherardini, S., & Bianchi, G. (2020). Quantum internet: Networking challenges in distributed quantum computing. IEEE Network, 34(1), 137–143. https://doi.org/10.1109/MNET.001.1900092

    Article  Google Scholar 

  24. Gisin, N., & Thew, R. (2007). Quantum communication. Nature Photonics, 1(3), 165–171.

    Article  Google Scholar 

  25. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., & Guo, G.-C. (2017). Quantum secure direct communication with quantum memory. Physical Review Letters, 118(22), 220501.

    Article  Google Scholar 

  26. Mozaffari, M., Kasgari, A. T. Z., Saad, W., Bennis, M., & Debbah, M. (2018). Beyond 5G with UAVs: Foundations of a 3D wireless cellular network. IEEE Transactions on Wireless Communications, 18(1), 357–372.

    Article  Google Scholar 

  27. Sharma, P. K., & Kim, D. I. (2018). Coverage probability of 3-D mobile UAV networks. IEEE Wireless Communications Letters, 8(1), 97–100.

    Article  Google Scholar 

  28. Sharma, P. K., & Kim, D. I. (2019). Random 3D mobile UAV networks: Mobility modeling and coverage probability. IEEE Transactions on Wireless Communications, 18(5), 2527–2538.

    Article  Google Scholar 

  29. Siddique, U., Tabassum, H., Hossain, E., & Kim, D. I. (2015). Wireless backhauling of 5G small cells: Challenges and solution approaches. IEEE Wireless Communications, 22(5), 22–31. https://doi.org/10.1109/MWC.2015.7306534

    Article  Google Scholar 

  30. Abdalla, M., Rodriguez, J., Elfergani, I., & Teixeira, A. (2019). Towards a converged optical-wireless Fronthaul/Backhaul solution for 5G networks and beyond. Optical and wireless convergence for 5G networks, IEEE, pp. 1–29.

    Google Scholar 

  31. Tzanakaki, A., et al. (2017). Wireless-optical network convergence: Enabling the 5G architecture to support operational and end-user services. IEEE Communications Magazine, 55(10), 184–192. https://doi.org/10.1109/MCOM.2017.1600643

    Article  Google Scholar 

  32. Khalif, B. N. A., Hasan, J. A. K., Alhumaima, R. S., & Al-Raweshidy, H. S. (2020). Performance analysis of quantum based cloud radio access networks. IEEE Access, 8, 18123–18133.

    Article  Google Scholar 

  33. Flamini, F., Spagnolo, N., & Sciarrino, F. (2018). Photonic quantum information processing: A review. Reports on Progress in Physics, 82, 016001.

    Article  Google Scholar 

  34. Di Renzo, M., Debbah, M., Phan-Huy, D. T., Zappone, A., Alouini, M. S., Yuen, C., Sciancalepore, C., Alexandropoulos, G. C., Hoydis, J., De Rosny, J., et al. (2019). Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP Journal on Wireless Communications and Networking, 2019, 1–20.

    Article  Google Scholar 

  35. Cai, C., Sun, Y., Niu, J., & Ji, Y. (2019). A quantum access network suitable for internetworking optical network units. IEEE Access, 7, 92091–92099.

    Article  Google Scholar 

  36. Nagatsuma, T., Ducournau, G., & Renaud, C. (2016). Advances in terahertz communications accelerated by photonics. Nature Photon, 10, 371–379.

    Article  Google Scholar 

  37. Cale, M., & Cacciapuoti, A. S. (2019). Quantum switch for the quantum internet: Noiseless communications through noisy channels. IEEE Journal on Selected Areas in Communications arXiv:1907.07432.

    Google Scholar 

  38. Welkie, A., Shangguan, L., Gummeson, J., Hu, W., & Jamieson, K. (2017). Programmable radio environments for smart spaces (ACM workshop on hot topics in networks). Palo Alto, CA, USA.

    Google Scholar 

  39. Bartlett, S. D., Rudolph, T., & Spekkens, R. W. (2003). Classical and quantum communication without a shared reference frame. Physical Review Letters, 91(2).

    Google Scholar 

  40. Ummethala, S., Harter, T., Koehnle, K., et al. (2019). THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nature Photonics, 13, 519–524.

    Article  Google Scholar 

  41. Yu, X., et al. (2016). 160 Gbit/s photonics wireless transmission in the 300–500 GHz band. APL Photon., 1, 081301.

    Article  Google Scholar 

  42. Pang, X. et al. (2016). 260 Gbit/s photonic–wireless link in the THz band. In Proceedings of 2016 IEEE Photonics Conference (IPC), pp. 9–10.

    Google Scholar 

  43. Nagatsuma, T., et al. (2016). 300-GHz-band wireless transmission at 50 Gbit/s over 100 meters. In 2016 41st international conference on infrared, Millimeter, and terahertz waves (IRMMW-THz), 2016 (pp. 1–2) https://doi.org/10.1109/IRMMW-THz.2016.7758356

    Google Scholar 

  44. Fröhlich, B., Dynes, J. F., Lucamarini, M., Sharpe, Q. W., Yuan, Z., & Shields, A. J. (2013). A quantum access network. Nature, 501, 69–72.

    Article  Google Scholar 

  45. Fröhlich, J., Dynes, F., Lucamarini, M., Sharpe, A. W., Tam, S. W.-B., Yuan, Z., & Shields, A. J. (2015). Quantum secured gigabit optical access networks. Scientific Reports, 5.

    Google Scholar 

  46. Fraunhofer. Beyond 5G -after the next generation. Fraunhofer Press release. https://www.fraunhofer.de/en/press/research-news/2017/november/beyond-5g-_-after-the-next-generation.html. Accessed 3 July 2019.

  47. Akyildiz, F., Jornet, J. M., & Han, C. (2014). Terahertz band: Next frontier for wireless communications. Physical Communication, 12, 16–32.

    Article  Google Scholar 

  48. Ericsson, A. B. Traffic exploration tool. http://www.ericsson.com/TET/trafficView/loadBasicEditor.ericsson. Accessed 3 July 2019.

  49. Xiao, M., et al. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9, September), 1909–1935.

    Article  Google Scholar 

  50. Huq, K. M. S., Jornet, J. M., Gerstacker, W. H., Al-Dulaimi, A., Zhou, Z., & Aulin, J. (2018). THz communications for mobile heterogeneous networks. IEEE Communications Magazine, 56(6, June), 94–95.

    Article  Google Scholar 

  51. Singh, R., Sicker, D., & Saidul Huq, K. M. (2020). MOTH-Mobility-induced Outages in THz: A Beyond 5G (B5G) application. 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, pp. 1–9. https://doi.org/10.1109/CCNC46108.2020.9045401.

  52. Haas, H. (2013, April). High-speed wireless networking using visible light. SPIE Newsroom.

    Google Scholar 

  53. Haas, H. (2011, August). Wireless data from every light bulb. TED Website.

    Google Scholar 

  54. Light Communication. IEEE 802.11 Task Group. Available: http://www.ieee802.org/11/Reports/tgbb_update.htm

  55. Cisco Service Provider Wi-Fi: A Platform for Business Innovation and Revenue Generation (CISCO White paper) (2015).

    Google Scholar 

  56. Wu, W., Shen, Q., Wang, M., & Shen, X. S. (2017, May). Performance analysis of IEEE 802.11.ad downlink hybrid beamforming. In 2017 IEEE International Conference on Communications (ICC).

    Google Scholar 

  57. Tsonev, D., Videv, S., & Haas, H. (2015). Towards a 100 Gb/s visible light wireless access network. Optics Express, 23, 1627–1637.

    Article  Google Scholar 

  58. Zeng, Z., Dehghani Soltani, M., Wang, Y., Wu, X., & Haas, H. (2020). Realistic indoor hybrid WiFi and OFDMA-based LiFi networks. IEEE Transactions on Communications, 68(5), 2978–2991.

    Article  Google Scholar 

  59. Wang, Y., & Haas, H. (2015). Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks. Journal of Lightwave Technology, 33(22), 4671–4682.

    Article  Google Scholar 

  60. Wu, X., & Haas, H. (2020). Load balancing for hybrid LiFi and WiFi networks: To tackle user mobility and light-path blockage. IEEE Transactions on Communications, 68(3, March), 1675–1683.

    Article  Google Scholar 

  61. Calabrese, F. D., Wang, L., Ghadimi, E., Peters, G., Hanzo, L., & Soldati, P. (2018). Learning radio resource management in RANs: Framework, opportunities, and challenges. IEEE Communications Magazine, 56(9), 138–145. https://doi.org/10.1109/mcom.2018.1701031

    Article  Google Scholar 

  62. Motade, S. N., & Kulkarni, A. V. (2018). Channel estimation and data detection using machine learning for MIMO 5G communication systems in fading channel. Technologies, 6(3, September) Article no. 72. https://doi.org/10.3390/technologies6030072

  63. Thilina, K. M., Choi, K. W., Saquib, N., & Hossain, E. (2013). Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2209–2221. https://doi.org/10.1109/jsac.2013.131120

    Article  Google Scholar 

  64. Parwez, M. S., Rawat, D. B., & Garuba, M. (2017). Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network (in English). Ieee Transactions on Industrial Informatics, 13(4), 2058–2065. https://doi.org/10.1109/tii.2017.2650206

    Article  Google Scholar 

  65. Maimo, L. F., Gomez, A. L. P., Clemente, F. J. G., Perez, M. G., & Perez, G. M. (2018). A self-adaptive deep learning-based system for anomaly detection in 5G networks. Ieee Access, 6, 7700–7712. https://doi.org/10.1109/access.2018.2803446

    Article  Google Scholar 

  66. Jiang, C. X., Zhang, H. J., Ren, Y., Han, Z., Chen, K. C., & Hanzo, L. (2017). Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105. https://doi.org/10.1109/mwc.2016.1500356wc

    Article  Google Scholar 

  67. Devi, R., Jha, R. K., Gupta, A., Jain, S., & Kumar, P. (2017). Implementation of intrusion detection system using adaptive neuro-fuzzy inference system for 5G wireless communication network. AEU-International Journal of Electronics and Communications, 74, 94–106. https://doi.org/10.1016/j.aeue.2017.01.025

    Article  Google Scholar 

  68. Li, J. Q., Zhao, Z. F., & Li, R. P. (2018). Machine learning-based IDS for software-defined 5G network. Iet Networks, 7(2), 53–60. https://doi.org/10.1049/iet-net.2017.0212

    Article  Google Scholar 

  69. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K.-C., & Hanzo, L. (2017). Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications, 24(2), 98–105.

    Article  Google Scholar 

  70. Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. Ieee Access, 6, 32328–32338. https://doi.org/10.1109/access.2018.2837692

    Article  Google Scholar 

  71. Zhang, N., Yang, P., Ren, J., Chen, D. J., Yu, L., & Shen, X. M. (2018). Synergy of big data and 5G wireless networks: Opportunities, approaches, and challenges. IEEE Wireless Communications, 25(1, February), 12–18. https://doi.org/10.1109/mwc.2018.1700193

    Article  Google Scholar 

  72. Zheng, K., Yang, Z., Zhang, K., Chatzimisios, P., Yang, K., & Xiang, W. (2016). Big data-driven optimization for mobile networks toward 5G. IEEE Network, 30(1, January–February), 44–51. https://doi.org/10.1109/mnet.2016.7389830

    Article  Google Scholar 

  73. Li, R. P., et al. (2017). Intelligent 5G: When cellular networks meet artificial intelligence (in English). IEEE Wireless Communications, 24(5), 175–183. https://doi.org/10.1109/mwc.2017.1600304wc

    Article  MathSciNet  Google Scholar 

  74. Vaquero, L., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive definition of fog computing. Proceedings of the ACM SIGCOMM Computer Communication Review, 44(5), 27–32.

    Article  Google Scholar 

  75. NGMN Alliance. (2015, February). 5G white paper [Online]. Available: https://www.ngmn.org/uploads/media/NGMN5GWhite PaperV10.pdf

  76. Dastjerdi, V., Gupta, H., Calheiros, R. N., Ghosh, S. K., & Buyya, R. (2016, January). Fog computing: Principals, architectures, and applications. ArXiv e-prints.

    Google Scholar 

  77. Yi, S., Li, C., & Li, Q. (2015, June). A survey of fog computing: Concepts, applications and issues. In Proceedings of the ACM Workshop on Mobile Big Data, Hangzhou, China, pp. 37–42.

    Google Scholar 

  78. Yannuzzi, M., Milito, R., Serral-Gracia, R., Montero, D., & Nemirovsky, M. (2014, December). Key ingredients in an iot recipe: Fog computing, cloud computing, and more fog computing. In Proceedings of the IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, Athens, pp. 325–329.

    Google Scholar 

  79. Google cloud and the environment. Google [Online]. Available: https://cloud.google.com/environment/

  80. Apple becomes a green energy supplier, with itself as customer. (2016, August). New York Times. [Online]. Available: https://www.nytimes.com/2016/08/24/business/energy-environment/as-energy-use-rises-corporations-turn-to-their-own-green-utility-sources.Html

  81. Microsoft environment: Enabling a sustainable future. Microsoft. [Online]. Available: https://www.microsoft.com/en-us/environment/default.aspx [12]. Apple, Facebook, and Google top Greenpeace energy report card. Fortune.com. [Online]. Available: http://fortune.com/2017/01/10/greenpeace-energy-report-apple-facebook-google/

  82. Chamola, V., & Sikdar, B. (2016). Solar powered cellular base stations: Current scenario, issues and proposed solutions. IEEE Communications Magazine, 54(5, May), 108–114.

    Article  Google Scholar 

  83. Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., & Huang, K. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3, March), 360–381.

    Article  Google Scholar 

  84. Xiao, Y., Niyato, D., Han, Z., & DaSilva, L. (2015). Dynamic energy trading for energy harvesting communication networks: A stochastic energy trading game. IEEE Journal on Selected Areas in Communications, 33(12, December), 2718–2734.

    Article  Google Scholar 

  85. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys Tutorials, 17(2), 757–789.

    Article  Google Scholar 

  86. Xiao, Y., Han, Z., Niyato, D., & Yuen, C. (2015, June). Bayesian reinforcement learning for energy harvesting communication systems with uncertainty. In Proceedings of the IEEE ICC Conference, London, UK.

    Google Scholar 

  87. Ge, X., Yang, B., Ye, J., Mao, G., Wang, C., & Han, T. (2015). Spatial spectrum and energy efficiency of random cellular networks. IEEE Transactions on Communications, 63(3, March), 1019–1030.

    Article  Google Scholar 

  88. Hossain, E., & Hasan, M. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation and Measurement Magazine, 18(3, June), 11–21.

    Article  Google Scholar 

  89. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6, June), 1065–1082.

    Article  Google Scholar 

  90. Jayachandran, J., Biswas, K., Mohammed, S. K., & Larsson, E. G. (2020). Efficient techniques for in-band system information broadcast in multi-cell massive MIMO. IEEE Transactions on Communications, 68(10, Oct.), pp. 6157–6173. https://doi.org/10.1109/TCOMM.2020.3007497

  91. Al-Dulaimi et al. (2018). Emerging technologies in software, hardware, and management aspects toward the 5G era: Trends and challenges. In 5G networks: Fundamental requirements, enabling technologies, and operations management, IEEE, ch 1, pp. 13–50.

    Google Scholar 

  92. Houtsma, V., van Veen, D., & Harstead, E. (2017). Recent progress on standardization of next-generation 25, 50, and 100G EPON. Journal of Lightwave Technology, 35, 1228–1234.

    Article  Google Scholar 

  93. Common Public Radio Interface (CPRI) [Online]. Available: http://www.cpri.info

  94. Vujicic, Z. et al. (2016). Considerations on performance, cost and power consumption of candidate 100G EPON architectures. 2016 18th international conference on transparent optical networks (ICTON), IEEE, pp. 1–6, Trento. https://doi.org/10.1109/ICTON.2016.7550683

  95. 40-Gigabit-Capable Passive Optical Network (NG-PON2). ITU-T G989.x Series of Recommendations.

    Google Scholar 

  96. Physical layer specifications and management parameters for 25 Gb/s and 50 Gb/s passive optical networks. IEEE 802.3ca Task Force. http://www.ieee802.org/3/ca/index.shtml

  97. IEEE P802.3cs Increased-reach Ethernet Optical Subscriber Access Task Force. http://www.ieee802.org/3/cs/index.html

  98. Higher speed passive optical networks. ITU-T G.9804.x Series of Recommendations. G.9804.1. Consented in July 2019.

    Google Scholar 

  99. Larsen, L. M. P., Checko, A., & Christiansen, H. L. (2019). A survey of the functional splits proposed for 5G mobile Crosshaul networks. IEEE Communications Surveys & Tutorials, 21(1), 146–172.

    Article  Google Scholar 

  100. Jung, H.-D., Lee, K. W., Kim, J. H., Kwon, Y.-H., & Park, J. H. (2016). Performance comparison of analog and digitized rof systems with nonlinear channel condition. IEEE Photonics Technology Letters, 28(6, March), 661–664.

    Article  Google Scholar 

  101. Rommel, S., et al. (2020). Towards a Scaleable 5G Fronthaul: Analog radio-over-Fiber and space division multiplexing. Journal of Lightwave Technology, OSA Publishing, 38(19), 5412–5422.

    Article  Google Scholar 

  102. Zhang, J. et al. (2016) Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul. In 2016 optical Fiber communications conference and exhibition (OFC), IEEE, pp. 1–3, Anaheim.

    Google Scholar 

  103. Nagatsuma, T. (2019). Advances in Terahertz communications accelerated by photonics technologies. OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, pp. 1–3.

    Google Scholar 

  104. Tafazolli, R. (2020). 6G wireless: A new strategic vision (White Paper). 5GIC Strategy Advisory Board. https://www.surrey.ac.uk/sites/default/files/2020-11/6g-wireless-a-new-strategic-vision-paper.pdf

Download references

Acknowledgments

The reach leading to these results was partially funded from i) European Union’s Horizon 2020 research and innovation programme under 5GENESIS project with Grant Agreement No. 815178; ii) European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie project EXPLOR with grant agreement No 872897; iii) European Regional Development Fund (FEDER), through COMPETE 2020, POR ALGARVE 2020, Fundação para a Ciência e a Tecnologia (FCT) under i-Five Project (POCI-01-0145-FEDER-030500); iv) ECSEL joint undertaking which is co-funded by the EU H2020 programme under grant agreement 876487 (NEXTPERCEPTION) and national funding agencies in Belgium, the Czech Republic, Finland, Germany, Italy, the Netherlands, and Spain; and iv) the “European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 839573”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firooz B. Saghezchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saghezchi, F.B., Rodriguez, J., Vujicic, Z., Nascimento, A., Huq, K.M.S., Gil-Castiñeira, F. (2022). Drive Towards 6G. In: Rodriguez, J., Verikoukis, C., Vardakas, J.S., Passas, N. (eds) Enabling 6G Mobile Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-74648-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74648-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74647-6

  • Online ISBN: 978-3-030-74648-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics