Skip to main content

Design of Heterogeneous Multi-agent System for Distributed Computation

  • Chapter
  • First Online:
Trends in Nonlinear and Adaptive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 488))

Abstract

A group behavior of a heterogeneous multi-agent system is studied which obeys an “average of individual vector fields” under strong couplings among the agents. Under stability of the averaged dynamics (not asking stability of individual agents), the behavior of heterogeneous multi-agent system can be estimated by the solution to the averaged dynamics. A following idea is to “design” individual agent’s dynamics such that the averaged dynamics performs the desired task. A few applications are discussed including estimation of the number of agents in a network, distributed least-squares or median solver, distributed optimization, distributed state estimation, and robust synchronization of coupled oscillators. Since stability of the averaged dynamics makes the initial conditions forgotten as time goes on, these algorithms are initialization-free and suitable for plug-and-play operation. At last, nonlinear couplings are also considered, which potentially asserts that enforced synchronization gives rise to an emergent behavior of a heterogeneous multi-agent system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More appropriate name could be “averaged dynamics,” which may however confuse the reader with the averaged dynamics in the well-known averaging theory [18] that deals with time average.

  2. 2.

    \(\dot{x} = f(t,x)\) is contractive if \(\exists \varTheta > 0\) such that \(\varTheta \frac{\partial f}{\partial x}(t,x) + \frac{\partial f}{\partial x}(t,x)^T \varTheta \le - I\) for all x and t [20].

  3. 3.

    The condition for w in \({\mathscr {D}}_x\) can be understood by recalling that \(\mathrm{col}(x_1,\ldots ,x_N) = 1_N \otimes s + (R \otimes I_n) \tilde{z}\).

  4. 4.

    A particular case of (4.20) is

    $$\begin{aligned} \dot{x}_i = f_i(t, x_i) + k B \sum _{j \in \mathscr {N}_i}\alpha _{ij}(x_j - x_i), \quad i \in \mathscr {N}, \end{aligned}$$

    where the matrix B is positive semi-definite, which can always be converted into (4.20) by a linear coordinate change.

References

  1. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  2. Moreau, L.: Stability of continuous-time distributed consensus algorithms. In: Proceedings of 43rd IEEE Conference on Decision and Control, pp. 3998–4003 (2004)

    Google Scholar 

  3. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  4. Seo, J.H., Shim, H., Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach. Automatica 45(11), 2659–2664 (2009)

    Article  MathSciNet  Google Scholar 

  5. Kim, H., Shim, H., Seo, J.H.: Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans. Autom. Control 56(1), 200–206 (2011)

    Article  MathSciNet  Google Scholar 

  6. De Persis, C., Jayawardhana, B.: On the internal model principle in formation control and in output synchronization of nonlinear systems. In: Proceedings of 51st IEEE Conference on Decision and Control, pp. 4894–4899 (2012)

    Google Scholar 

  7. Isidori, A., Marconi, L., Casadei, G.: Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory. IEEE Trans. Autom. Control 59(10), 2680–2691 (2014)

    Article  MathSciNet  Google Scholar 

  8. Su, Y., Huang, J.: Cooperative semi-global robust output regulation for a class of nonlinear uncertain multi-agent systems. Automatica 50(4), 1053–1065 (2014)

    Article  MathSciNet  Google Scholar 

  9. Casadei, G., Astolfi, D.: Multipattern output consensus in networks of heterogeneous nonlinear agents with uncertain leader: a nonlinear regression approach. IEEE Trans. Autom. Control 63(8), 2581–2587 (2017)

    Article  MathSciNet  Google Scholar 

  10. Su, Y.: Semi-global output feedback cooperative control for nonlinear multi-agent systems via internal model approach. Automatica 103, 200–207 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zhang, M., Saberi, A., Stoorvogel, A.A., Grip, H.F.: Almost output synchronization for heterogeneous time-varying networks for a class of non-introspective, nonlinear agents without exchange of controller states. Int. J. Robust Nonlinear Control 26(17), 3883–3899 (2016)

    Article  MathSciNet  Google Scholar 

  12. DeLellis, P., Di Bernardo, M., Liuzza, D.: Convergence and synchronization in heterogeneous networks of smooth and piecewise smooth systems. Automatica 56, 1–11 (2015)

    Article  MathSciNet  Google Scholar 

  13. Montenbruck, J.M., Bürger, M., Allgöwer, F.: Practical synchronization with diffusive couplings. Automatica 53, 235–243 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kim, J., Yang, J., Shim, H., Kim, J.-S., Seo, J.H.: Robustness of synchronization of heterogeneous agents by strong coupling and a large number of agents. IEEE Trans. Autom. Control 61(10), 3096–3102 (2016)

    Article  MathSciNet  Google Scholar 

  15. Panteley, E., Loría, A.: Synchronization and dynamic consensus of heterogeneous networked systems. IEEE Trans. Autom. Control 62(8), 3758–3773 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lee, S., Yun, H., Shim, H.: Practical synchronization of heterogeneous multi-agent system using adaptive law for coupling gains. In: Proceedings of American Control Conference, pp. 454–459 (2018)

    Google Scholar 

  17. Modares, H., Lewis, F.L., Kang, W., Davoudi, A.: Optimal synchronization of heterogeneous nonlinear systems with unknown dynamics. IEEE Trans. Autom. Control 63(1), 117–131 (2017)

    Article  MathSciNet  Google Scholar 

  18. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, Berlin (1985)

    Book  Google Scholar 

  19. Lee, J.G., Shim, H.: A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling. Automatica 117 (2020)

    Google Scholar 

  20. Lohmiller, W., Slotine, J.J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)

    Article  MathSciNet  Google Scholar 

  21. Shames, I., Charalambous, T., Hadjicostis, C.N., Johansson, M.: Distributed network size estimation and average degree estimation and control in networks isomorphic to directed graphs. In: Proceedings of 50th Annual Allerton Conference on Communication, Control, and Computing, pp. 1885–1892 (2012)

    Google Scholar 

  22. Lee, D., Lee, S., Kim, T., Shim, H.: Distributed algorithm for the network size estimation: blended dynamics approach. In: Proceedings of 57th IEEE Conference on Decision and Control, pp. 4577–4582 (2018)

    Google Scholar 

  23. Mou, S., Morse, A.S.: A fixed-neighbor, distributed algorithm for solving a linear algebraic equation. In: Proceedings of 12th European Control Conference, pp. 2269–2273 (2013)

    Google Scholar 

  24. Mou, S., Liu, J., Morse, A.S.: A distributed algorithm for solving a linear algebraic equation. IEEE Trans. Autom. Control 60(11), 2863–2878 (2015)

    Article  MathSciNet  Google Scholar 

  25. Anderson, B.D.O., Mou, S., Morse, A.S., Helmke, U.: Decentralized gradient algorithm for solution of a linear equation. Numer. Algebra Control Optim. 6(3), 319–328 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Zhou, J., Mou, S., Corless, M.J.: A distributed linear equation solver for least square solutions. In: Proceedings of 56th IEEE Conference on Decision and Control, pp. 5955–5960 (2017)

    Google Scholar 

  27. Shi, G., Anderson, B.D.O.: Distributed network flows solving linear algebraic equations. In: Proceedings of American Control Conference, pp. 2864–2869 (2016)

    Google Scholar 

  28. Shi, G., Anderson, B.D.O., Helmke, U.: Network flows that solve linear equations. IEEE Trans. Autom. Control 62(6), 2659–2674 (2017)

    Article  MathSciNet  Google Scholar 

  29. Liu, Y., Lou, Y., Anderson, B.D.O., Shi, G.: Network flows as least squares solvers for linear equations. In: Proceedings of 56th IEEE Conference on Decision and Control, pp. 1046–1051 (2017)

    Google Scholar 

  30. Lee, J.G., Shim, H.: A distributed algorithm that finds almost best possible estimate under non-vanishing and time-varying measurement noise. IEEE Control Syst. Lett. 4(1), 229–234 (2020)

    Article  MathSciNet  Google Scholar 

  31. Lee, J.G., Kim, J., Shim, H.: Fully distributed resilient state estimation based on distributed median solver. IEEE Trans. Autom. Control 65(9), 3935–3942 (2020)

    Article  MathSciNet  Google Scholar 

  32. Yun, H., Shim, H., Ahn, H.-S.: Initialization-free privacy-guaranteed distributed algorithm for economic dispatch problem. Automatica 102, 86–93 (2019)

    Article  MathSciNet  Google Scholar 

  33. Lee, J.G., Shim, H.: Behavior of a network of heterogeneous Liénard systems under strong output coupling. In: Proceedings of 11th IFAC Symposium on Nonlinear Control Systems, pp. 342–347 (2019)

    Google Scholar 

  34. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50(6), 1539–1564 (2014)

    Article  MathSciNet  Google Scholar 

  35. Bai, H., Freeman, R.A., Lynch, K.M.: Distributed Kalman filtering using the internal model average consensus estimator. In: Proceedings of American Control Conference, pp. 1500–1505 (2011)

    Google Scholar 

  36. Kim, J., Shim, H., Wu, J.: On distributed optimal Kalman-Bucy filtering by averaging dynamics of heterogeneous agents. In: Proceedings of 55th IEEE Conference on Decision and Control, pp. 6309–6314 (2016)

    Google Scholar 

  37. Mitra, A., Sundaram, S.: An approach for distributed state estimation of LTI systems. In: Proceedings of 54th Annual Allerton Conference on Communication, Control, and Computing, pp. 1088–1093 (2016)

    Google Scholar 

  38. Kim, T., Shim, H., Cho, D.D.: Distributed Luenberger observer design. In: Proceedings of 55th IEEE Conference on Decision and Control, pp. 6928–6933 (2016)

    Google Scholar 

  39. dos Santos, A.M., Lopes, S.R., Viana, R.L.: Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat. Physica A: Stat. Mech. Appl. 338(3–4), 335–355 (2004)

    Article  MathSciNet  Google Scholar 

  40. Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM: Control, Optim. Calc. Var. 7, 471–493 (2002)

    Google Scholar 

  41. Lee, J.G., Berger, T., Trenn, S., Shim, H.: Utility of edge-wise funnel coupling for asymptotically solving distributed consensus optimization. In: Proceedings of 19th European Control Conference, pp. 911–916 (2020)

    Google Scholar 

  42. Lee, J.G., Trenn, S., Shim, H.: Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling. Under review (2020). https://arxiv.org/abs/2012.14580

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Science and ICT) under No. NRF-2017R1E1A1A03070342 and No. 2019R1A6A3A12032482.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungbo Shim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.G., Shim, H. (2022). Design of Heterogeneous Multi-agent System for Distributed Computation. In: Jiang, ZP., Prieur, C., Astolfi, A. (eds) Trends in Nonlinear and Adaptive Control. Lecture Notes in Control and Information Sciences, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-030-74628-5_4

Download citation

Publish with us

Policies and ethics