Skip to main content

Development of Intelligent and Predictive Self-Healing Composite Structures Using Dynamic Data-Driven Applications Systems

  • 234 Accesses

Abstract

This chapter presents an intelligent self-healing design of fiber-reinforced polymer (FRP) composites for predictive self-healing using the Dynamic Data-Driven Application Systems (DDDAS) paradigm through damage prognosis and a non-autonomous self-healing protocol. The proposed intelligent self-healing structural concept is composed of three inter-connected modules: (1) a damage sensing module, (2) a damage-prognosis module, and (3) a self-healing module. The current study focuses on developing the self-healing module of the proposed intelligent self-healing structural system - repeatable self-healing of FRP using thermoplastic healing agents and shape memory polymers (SMP) in FRP composites structures. This self-healing mechanism is motivated by the bio-mimetic process of ‘close then heal’ mechanism where the SMP complements the cracks’ closing, and the thermoplastic healing agent performs the healing process. For this purpose, double-cantilever beam (DCB) tests were carried out to quantify the healing efficiency in terms of Mode-I interlaminar fracture toughness (G Ic) following the ASTM D5528-13 testing protocol, and the healing efficiencies of seven different healing cycles were assessed to test the repeatability of the healing mechanism. The tests showed promising healing efficiencies ranging from 58% to 73% in terms of regaining the fracture toughness of virgin specimens. Furthermore, fractography analysis using Scanning Electron Microscopy (SEM) and the optical microscope of the fractured FRP composite specimens were also carried out qualitatively to understand the mechanisms responsible for enhancing healing efficiency.

Keywords

  • Repeatable self-healing
  • Thermoplastic healing agent
  • Delamination
  • Mode-I Interlaminar fracture toughness

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-74568-4_9
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-74568-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11

References

  1. C. Farhat et al., Towards a Dynamic Data Driven System for Structural and Material Health Monitoring (Springer, Berlin/Heidelberg, 2006)

    CrossRef  Google Scholar 

  2. C.R. Farrar, N.A.J. Lieven, Damage prognosis: the future of structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1851), 623–632 (2007)

    CrossRef  Google Scholar 

  3. R.S. Trask, C.J. Norris, I.P. Bond, Stimuli-triggered self-healing functionality in advanced fibre-reinforced composites. J. Intell. Mater. Syst. Struct. 25(1), 87–97 (2014)

    CrossRef  Google Scholar 

  4. G. Li, V.D. Muthyala, Impact characterization of sandwich structures with an integrated orthogrid stiffened syntactic foam core. Compos. Sci. Technol. 68(9), 2078–2084 (2008)

    CrossRef  Google Scholar 

  5. J. Nji, G. Li, Damage healing ability of a shape-memory-polymer-based particulate composite with small thermoplastic contents. Smart Mater. Struct. 21(2), 025011 (2012)

    CrossRef  Google Scholar 

  6. K.A. Williams, D.R. Dreyer, C.W. Bielawski, The underlying chemistry of self-healing materials. MRS Bull. 33(8), 759–765 (2011)

    CrossRef  Google Scholar 

  7. J. Lee et al., Fracture behaviour of a self-healing microcapsule-loaded epoxy system. Ex-press Polym Lett 5(3), 246–253 (2011)

    CrossRef  Google Scholar 

  8. B.J. Blaiszik et al., Self-healing polymers and composites. Annu. Rev. Mater. Res. 40(1), 179–211 (2010)

    CrossRef  Google Scholar 

  9. E.B. Murphy, F. Wudl, The world of smart healable materials. Prog. Polym. Sci. 35(1), 223–251 (2010)

    CrossRef  Google Scholar 

  10. S.R. White et al., Autonomic healing of polymer composites. Nature 409, 794 (2001)

    CrossRef  Google Scholar 

  11. R.S. Trask, G.J.Williams, I.P. Bond, Bioinspired self-healing of advanced composite structures using hollow glass fibres. J. R. Soc. Interface 4(13), 363–371 (2007)

    CrossRef  Google Scholar 

  12. R.S. Trask, I.P. Bond, Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater. Struct. 15(3), 704 (2006)

    CrossRef  Google Scholar 

  13. J.W.C. Pang, I.P. Bond, ‘Bleeding composites’—damage detection and self-repair using a biomimetic approach. Compos. A. Appl. Sci. Manuf. 36(2), 183–188 (2005)

    CrossRef  Google Scholar 

  14. J.W.C. Pang, I.P. Bond, A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 65(11), 1791–1799 (2005)

    CrossRef  Google Scholar 

  15. E.N. Brown, S.R. White, N.R. Sottos, Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 39(5), 1703–1710 (2004)

    CrossRef  Google Scholar 

  16. J. Yang et al., Microencapsulation of isocyanates for self-healing polymers. Macromole-cules 41(24), 9650–9655 (2008)

    CrossRef  Google Scholar 

  17. S.H. Cho et al., Polydimethylsiloxane-based self-healing materials. Adv. Mater. 18(8), 997–1000 (2006)

    CrossRef  Google Scholar 

  18. C. Dry, Procedures developed for self-repair of polymer matrix composite materials. Compos. Struct. 35(3), 263–269 (1996)

    CrossRef  Google Scholar 

  19. M.R. Kessler, N.R. Sottos, S.R. White, Self-healing structural composite materials. Com-pos. A. Appl. Sci. Manuf. 34(8), 743–753 (2003)

    CrossRef  Google Scholar 

  20. S.M. Bleay et al., A smart repair system for polymer matrix composites. Compos. A. Appl. Sci. Manuf. 32(12), 1767–1776 (2001)

    CrossRef  Google Scholar 

  21. S.A. Hayes et al., A self-healing thermosetting composite material. Compos. A. Appl. Sci. Manuf. 38(4), 1116–1120 (2007)

    CrossRef  Google Scholar 

  22. G. Li, H. Meng, J. Hu, Healable thermoset polymer composite embedded with stimuli-responsive fibres. J. R. Soc. Interface 9(77), 3279–3287 (2012)

    CrossRef  Google Scholar 

  23. X. Chen et al., A thermally re-mendable cross-linked polymeric material. Science 295(5560), 1698–1702 (2002)

    CrossRef  Google Scholar 

  24. T.A. Plaisted, S. Nemat-Nasser, Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer. Acta Mater. 55(17), 5684–5696 (2007)

    CrossRef  Google Scholar 

  25. P. Cordier et al., Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 451, 977–980 (2008)

    Google Scholar 

  26. D. Montarnal et al., Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc. 131(23), 7966–7967 (2009)

    CrossRef  Google Scholar 

  27. R.P. Wool, K.M. O’Connor, A theory crack healing in polymers. J. Appl. Phys. 52(10), 5953–5963 (1981)

    CrossRef  Google Scholar 

  28. D.A. Hurley, D.R. Huston, Coordinated sensing and active repair for self-healing. Smart Mater. Struct. 20(2), 025010 (2011)

    CrossRef  Google Scholar 

  29. S. Torkamani et al., A novel damage index for damage identification using guided waves with application in laminated composites. Smart Mater. Struct. 23(9), 095015 (2014)

    CrossRef  Google Scholar 

  30. G. Li, N. Uppu, Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization. Compos. Sci. Technol. 70(9), 1419–1427 (2010)

    CrossRef  Google Scholar 

  31. M. Thapa et al., Development of intelligent and predictive self-healing composite structures using dynamic data-driven applications systems. Handbook of Dynamic Data Driven Applications Systems, Editors:, Blasch, E., Ravela, S. and Aved, A., Springer Nature. 173–191 (2018)

    Google Scholar 

  32. B. Jony et al., Repeatable self-healing of thermosetting fiber reinforced polymer composites with thermoplastic healant. Smart Mater. Struct. 28 (2), 025037 (2019)

    CrossRef  Google Scholar 

  33. M. Thapa et al., Experimental characterization of shape memory polymer enhanced thermoplastic self-healing carbon/epoxy composites. AIAA Scitech 2019 Forum. 1112 (2019)

    Google Scholar 

  34. N.J. Vishe et al., Healing of Mode-I Fatigue Crack in Fiber Reinforced Composites using Thermoplastic Healants. AIAA Scitech 2020 Forum, 2104 (2019)

    Google Scholar 

  35. Product data sheet CAPA 6506, 16 Oct 2014, PERSTORP (2014), https://www.perstorp.com/products/capa_6506

  36. G. Li, O. Ajisafe, H. Meng, Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 54(2), 920–928 (2013)

    CrossRef  Google Scholar 

  37. Shape memory polymer presentation e-catalogue, SMP Technologies Inc., http://www.smptechno.com/pdf/smpvsspresentation100218.pdf

  38. Standard test method for Mode-I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, ASTM D5528, 10/01/2013

    Google Scholar 

  39. C. Larco, R. Pahonie, M. Mihaila-Andres, Experimental study on mode I fracture of fibredux unidirectional prepreg. AIP Conf. Proc. 1836(1), 020037 (2017)

    CrossRef  Google Scholar 

  40. M.R. Kessler, S.R.White, Self-activated healing of delamination damage in woven compo-sites. Compos. A. Appl. Sci. Manuf. 32(5), 683–699 (2001)

    CrossRef  Google Scholar 

  41. J.F. Patrick et al., Continuous self-healing life cycle in vascularized structural composites. Adv. Mater. 26(25), 4302–4308 (2014)

    CrossRef  Google Scholar 

  42. H. Ghazali, L. Ye, M.Q. Zhang, Interlaminar fracture of CF/EP composite containing a dual-component microencapsulated self-healant. Compos. A. Appl. Sci.Manuf. 82, 226–234 (2016)

    CrossRef  Google Scholar 

  43. C.H. Wang et al., Interlayer self-healing and toughening of carbon fibre/epoxy composites using copolymer films. Compos. A. Appl. Sci. Manuf. 43(3), 512–518 (2012)

    CrossRef  Google Scholar 

  44. K. Pingkarawat et al., Healing of carbon fibre-epoxy composites using thermoplastic additives. Polym. Chem. 4(18), 5007–5015 (2013)

    CrossRef  Google Scholar 

Download references

Acknowledgments

Funding for this work has been provided by the AFOSR Dynamic Data-Driven Application System Directorate (FA9550-17-1-0033). Scanning electron microscopy was carried out in the Optical Analysis Facility, which is supported by the Department of Biological Sciences. The authors would like to thank Professor Mark E. Barkey and Dr. Paul G. Allison for allowing to use of their lab facilities for various testing. The support of the Department of Aerospace Engineering and Mechanics at The University of Alabama, Tuscaloosa, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Thapa, M., Jony, B., Mulani, S.B., Roy, S. (2022). Development of Intelligent and Predictive Self-Healing Composite Structures Using Dynamic Data-Driven Applications Systems. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-74568-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74568-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74567-7

  • Online ISBN: 978-3-030-74568-4

  • eBook Packages: Computer ScienceComputer Science (R0)