Skip to main content

A Computational Steering Framework for Large-Scale Composite Structures: Part I—Parametric-Based Design and Analysis

  • 168 Accesses

Abstract

Recent advances in simulation, optimization, structural health monitoring, and high-performance computing create a unique opportunity to combine the developments in these fields to formulate a Dynamic Data-Driven Applications Systems (DDDAS) Interactive Structure Composite Element Relation Network (DISCERN) framework. DISCERN consists of the following items and features: a structural health monitoring (SHM) system, an advanced structural modeling and fluid-structure interaction (FSI) simulation, sensitivity analysis, optimization and control modules. High-performance computing (HPC) is employed to enhance the efficiency and effectiveness of the system. The intended application of the DISCERN framework is the analysis of medium-to-large-scale composite structures. These include aerospace structures, such as military aircraft fuselage and wings, helicopter blades, and unmanned aerial vehicles, and civil structures, such as wind turbine blades and towers. The proposed DISCERN framework continuously and dynamically integrates the SHM data into the analysis of these structures. This capability allows one to: (1) Shelter the structures from excessive stress levels during operation; (2) Make informed decisions to perform structural maintenance and repair; and (3) Predict the remaining fatigue life of the structure. In Part I we present the computational framework for parametric-based design and analysis of these structures, and in Part II we discuss the optimization and control modules within the proposed DISCERN framework, including the integration of the FSI simulations.

Keywords

  • Adjoint-based control
  • Continuum damage model
  • Isogeometric analysis
  • Kirchhoff–Love shells
  • Progressive damage
  • Fatigue damage

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-74568-4_8
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-74568-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11
Fig. 8.12
Fig. 8.13
Fig. 8.14

References

  1. Autodesk T-Splines Plug-in for Rhino. http://www.tsplines.com/products/tsplines-for-rhino.html. 2014.

  2. Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 199:229–263, 2010.

    MathSciNet  CrossRef  Google Scholar 

  3. Y. Bazilevs, L. Beirao da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli. Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Mathematical Models and Methods in Applied Sciences, 16:1031–1090, 2006.

    MathSciNet  CrossRef  Google Scholar 

  4. Y. Bazilevs, M.-C. Hsu, and M.T Bement. Adjoint-based control of fluid–structure interaction for computational steering applications. Procedia Computer Science, 18:1989–1998, 2013.

    Google Scholar 

  5. Y. Bazilevs, M.-C. Hsu, J. Kiendl, and D. J. Benson. A computational procedure for prebending of wind turbine blades. International Journal for Numerical Methods in Engineering, 89:323–336, 2012.

    CrossRef  Google Scholar 

  6. Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. International Journal for Numerical Methods in Fluids, 65:236–253, 2011.

    Google Scholar 

  7. Y. Bazilevs, M.-C. Hsu, and M. A. Scott. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering, 249-252:28–41, 2012.

    MathSciNet  CrossRef  Google Scholar 

  8. Y. Bazilevs, A.L. Marsden, F. Lanza di Scalea, A. Majumdar, and M. Tatineni. Toward a computational steering framework for large-scale composite structures based on continually and dynamically injected sensor data. Procedia Computer Science, 9:1149–1158, 2012.

    CrossRef  Google Scholar 

  9. Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid–Structure Interaction: Methods and Applications. John Wiley & Sons, Chichester, 2013.

    CrossRef  Google Scholar 

  10. D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. Isogeometric shell analysis: The Reissner–Mindlin shell. Computer Methods in Applied Mechanics and Engineering, 199:276–289, 2010.

    MathSciNet  CrossRef  Google Scholar 

  11. D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 200:1367–1378, 2011.

    MathSciNet  CrossRef  Google Scholar 

  12. J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics withimproved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60:371–75, 1993.

    CrossRef  Google Scholar 

  13. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester, 2009.

    CrossRef  Google Scholar 

  14. I. M. Daniel and O. Ishai. Engineering Mechanics of Composite Materials. Oxford University Press, New York, NY, 1994.

    Google Scholar 

  15. F. Darema. Dynamic data driven applications systems: A new paradigm for application simulations and measurements. in proceedings of ICCS 2004 4th International Conference on Computational Science, pages 662–669, 2004.

    Google Scholar 

  16. F. Lanza di Scalea, H. Matt, I. Bartoli, S. Coccia, G. Park, and C. Farrar. Health monitoring of uav wing skin-to-spar joints using guided waves and macro fiber composite transducers. Journal of Intelligent Material Systems and Structures, 18:373–388, 2007.

    CrossRef  Google Scholar 

  17. Grasshopper. http://www.grasshopper3d.com/. Accessed 27 May 2016.

  18. M. M. Hand, D. A. Simms, L. J. Fingersh, D. W. Jager, J. R. Cotrell, S. Schreck, and S. M. Larwood. Unsteady aerodynamics experiment phase VI: Wind tunnel test configurations and available data campaigns. Technical Report NREL/TP-500-29955, National Renewable Energy Laboratory, Golden, CO, 2001.

    Google Scholar 

  19. M.-C. Hsu, I. Akkerman, and Y. Bazilevs. Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment. Wind Energy, 2012. In review.

    Google Scholar 

  20. M.-C. Hsu, C. Wang, A. J. Herrema, D. Schillinger, A. Ghoshal, and Y. Bazilevs. An interactive geometry modeling and parametric design platform for isogeometric analysis. Computers and Mathematics with Applications, 70(7):1481–1500, 2015.

    MathSciNet  CrossRef  Google Scholar 

  21. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.

    MathSciNet  CrossRef  Google Scholar 

  22. J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Computer Methods in Applied Mechanics and Engineering, 199:2403–2416, 2010.

    MathSciNet  CrossRef  Google Scholar 

  23. J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering, 198:3902–3914, 2009.

    MathSciNet  CrossRef  Google Scholar 

  24. A. Korobenko, M.-C Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs. Structural mechanics modeling and FSI simulation of wind turbines. Mathematical Models and Methods in Applied Science, 23:249–272, 2013.

    Google Scholar 

  25. A. Korobenko, M. Pigazzini, X. Deng, and Y. Bazilevs. Multiscale dddas framework for damage prediction in aerospace composite structures. In E. Blasch, S. Ravela, and A. Aved, editors, Handbook of Dynamic Data Driven Applications Systems, pages 677–696. Springer, 2018.

    Google Scholar 

  26. A. Manohar and F. Lanza di Scalea. Wavelet aided multivariate outlier analysis to enhance defect contrast in thermal images. Experimental Techniques, Society for Experimental Mechanics, 2011. in press.

    Google Scholar 

  27. H. Matt, I. Bartoli, and F. Lanza di Scalea. Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures. Journal of the Acoustical Society of America, 118:2240–2252, 2005.

    CrossRef  Google Scholar 

  28. Numerical Manufacturing And Design Tool (NuMAD). http://energy.sandia.gov/energy/renewable-energy/wind-power/rotor-innovation/numerical-manufacturing-and-design-tool-numad/. 2015.

  29. J. T. Oden, K. R. Diller, C. Bajaj, J. C. Browne, J. Hazle, I. Babuska, J. Bass, L. Demkowicz, Y. Feng, D. Fuentes, S. Prudhomme, M. N. Rylander, R. J. Stafford, and Y. Zhang. Dynamic data-driven finite element models for laser treatment of prostate cancer. Num. Meth. PDE, 23:904–922, 2007.

    CrossRef  Google Scholar 

  30. G. Park, C. Farrar, F. Lanza di Scalea, and S. Coccia. Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Materials and Structures, 15:1673–1683, 2006.

    CrossRef  Google Scholar 

  31. L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Communication), 2nd ed. Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  32. J. N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. CRC Press, Boca Raton, FL, 2004.

    Google Scholar 

  33. Rhino. http://www.rhino3d.com/. Accessed 27 May 2016.

  34. Rhino Developer Docs. http://developer.rhino3d.com/. Accessed 27 May 2016.

  35. RhinoCommon. http://developer.rhino3d.com/guides/rhinocommon. Accessed 27 May 2016.

  36. M. A. Scott, T. J. R. Hughes, T. W. Sederberg, and M. T. Sederberg. An integrated approach to engineering design and analysis using the Autodesk T-spline plugin for Rhino3d. ICES REPORT 14-33, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, September 2014, 2014.

    Google Scholar 

  37. M. A. Scott, X. Li, T. W. Sederberg, and T. J. R. Hughes. Local refinement of analysis-suitable T-splines. Computer Methods in Applied Mechanics and Engineering, 2012. Accepted for publication.

    Google Scholar 

  38. T. W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng, and T. Lyche. T-spline simplification and local refinement. ACM Transactions on Graphics, 23(3):276–283, 2004.

    CrossRef  Google Scholar 

  39. T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCS. ACM Transactions on Graphics, 22(3):477–484, 2003.

    CrossRef  Google Scholar 

  40. SolidWorks. http://www.solidworks.com/. Accessed 27 May 2016.

  41. D. M. Somers. Design and experimental results for the S809 airfoil. Technical Report NREL/SR-440-6918, National Renewable Energy Laboratory, Golden, CO, 1997.

    Google Scholar 

  42. M. Stavric and O. Marina. Parametric modeling for advanced architecture. International Journal of Applied Mathematics and Informatics, 5(1):9–16, 2011.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the AFOSR Grant FA9550-12-1-0005, AFOSR Grant FA9550-16-1-0131, ARO grant No. W911NF-14-1-0296. The authors greatly acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Korobenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Korobenko, A., Hsu, M.C., Bazilevs, Y. (2022). A Computational Steering Framework for Large-Scale Composite Structures: Part I—Parametric-Based Design and Analysis. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-74568-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74568-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74567-7

  • Online ISBN: 978-3-030-74568-4

  • eBook Packages: Computer ScienceComputer Science (R0)