C.E. Antoniak, Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 2, 1152–1174 (1974)
MathSciNet
MATH
CrossRef
Google Scholar
C.H. Bishop, B.J. Etherton, S.J. Majumdar, Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Weather Rev. 129(3), 420–436 (2001)
Google Scholar
D. Blackwell, J.B. MacQueen, Ferguson distributions via pólya urn schemes. Ann. Stat. 1, 353–355 (1973)
MATH
Google Scholar
R. Brookmeyer, D.F. Stroup, Monitoring the Health of Populations: Statistical Principles and Methods for Public Health Surveillance (Oxford University Press, New York, 2003)
CrossRef
Google Scholar
G. Burgers, P. Jan van Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126(6), 1719–1724 (1998)
CrossRef
Google Scholar
K. Burghardt et al., Testing modeling assumptions in the West Africa Ebola outbreak. Sci. Rep. 6, 34598 (2016). https://doi.org/10.1038/srep34598
CrossRef
Google Scholar
B. Cai, A.B. Lawson, M. Hossain, J. Choi, R.S. Kirby, J. Liu et al., Bayesian semiparametric model with spatially–temporally varying coefficients selection. Stat. Med. 32(21), 3670–3685 (2013)
MathSciNet
CrossRef
Google Scholar
CDC, Weekly u.s. influenza surveillance report, 2007–2008, 2008–2009, 2009–2010 (2016)
Google Scholar
A.J. Chorin, M. Morzfeld, X. Tu, A survey of implicit particle filters for data assimilation, in State-Space Models, ed. by Y. Zeng, S. Wu (Springer, New York, 2013), pp. 63–88
CrossRef
Google Scholar
Y. Chung, D.B. Dunson, The local Dirichlet process. Ann. Inst. Stat. Math. 63(1), 59–80 (2011)
MathSciNet
MATH
CrossRef
Google Scholar
J.A. Duan, M. Guindani, A.E. Gelfand, Generalized spatial Dirichlet process models. Biometrika 94(4), 809–825 (2007)
MathSciNet
MATH
CrossRef
Google Scholar
D.B. Dunson, J.-H. Park, Kernel stick-breaking processes. Biometrika 95(2), 307–323 (2008)
MathSciNet
MATH
CrossRef
Google Scholar
M.D. Escobar, M. West, Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90(430), 577–588 (1995)
MathSciNet
MATH
CrossRef
Google Scholar
G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics. J. Geophys. Res. Oceans 99(C5), 10143–10162 (1994)
CrossRef
Google Scholar
T.S. Ferguson, A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)
MathSciNet
MATH
CrossRef
Google Scholar
R.D. Fricker, B.L. Hegler, D.A. Dunfee, Comparing syndromic surveillance detection methods: ears versus a cusum-based methology. Stat. Med. 27, 3407–3429 (2008)
MathSciNet
CrossRef
Google Scholar
M. Fuentes, B. Reich, Multivariate spatial nonparametric modelling via kernel processes mixing. Stat. Sin. 23(1), 75–97 (2013)
MathSciNet
MATH
Google Scholar
A.E. Gelfand, A. Kottas, S.N. MacEachern, Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Am. Stat. Assoc. 100(471), 1021–1035 (2005)
MathSciNet
MATH
CrossRef
Google Scholar
P.J. Green, S. Richardson, Hidden Markov models and disease mapping. J. Am. Stat. Assoc. 97(460), 1055–1070 (2002)
MathSciNet
MATH
CrossRef
Google Scholar
M.S. Grewal, A.P. Andrews, A.K. Filtering, Theory and practice using matlab, 3rd edn. (Wiley, Hoboken, 2001)
Google Scholar
R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)
MathSciNet
CrossRef
Google Scholar
K. Kleinman, Generalized linear models and generalized linear mixed models for small-area surveillance, in Spatial and Syndromic Surveillance for Public Health, ed. by A.B. Lawson, K. Kleinman (Wiley, West Sussex, 2005), pp. 77–94
CrossRef
Google Scholar
L. Knorr-Held, S. Richardson, A hierarchical model for space–time surveillance data on meningococcal disease incidence. J. R. Stat. Soc. Ser. C Appl. Stat. 52(2), 169–183 (2003)
MathSciNet
MATH
CrossRef
Google Scholar
A. Kottas, J.A. Duan, A.E. Gelfand, Modeling disease incidence data with spatial and spatio temporal Dirichlet process mixtures. Biom. J. 50(1), 29–42 (2008)
MathSciNet
MATH
CrossRef
Google Scholar
A.B. Lawson, K. Kleinman et al., Spatial and Syndromic Surveillance for Public Health (Wiley, New York, 2005)
CrossRef
Google Scholar
Y. Le Strat, F. Carrat, Monitoring epidemiologic surveillance data using hidden Markov models. Stat. Med. 18(24), 3463–3478 (1999)
CrossRef
Google Scholar
J. Mandel, J.D. Beezley, An Ensemble Kalman-Particle Predictor-Corrector Filter for Non-Gaussian Data Assimilation (Springer, Berlin/Heidelberg, 2009), pp. 470–478
Google Scholar
J. Mandel, J.D. Beezley, A.K. Kochanski, V.Y. Kondratenko, M. Kim, Assimilation of perimeter data and coupling with fuel moisture in a wildland fire–atmosphere DDDAS. Proc. Comput. Sci. 9, 1100–1109 (2012)
CrossRef
Google Scholar
J. Mandel, L.S. Bennethum, M. Chen, J.L. Coen, C.C. Douglas, L.P. Franca, C.J. Johns, M. Kim, A.V. Knyazev, R. Kremens, V. Kulkarni, G. Qin, A. Vodacek, J. Wu, W. Zhao, A. Zornes, Towards a Dynamic Data Driven Application System for Wildfire Simulation (Springer, Berlin/Heidelberg, 2005), pp. 632–639
Google Scholar
A. Patra, M. Bursik, J. Dehn, M. Jones, M. Pavolonis, E.B. Pitman, T. Singh, P. Singla, P. Webley, A DDDAS framework for volcanic ash propagation and hazard analysis. Proc. Comput. Sci. 9, 1090–1099 (2012)
MATH
CrossRef
Google Scholar
A.K. Patra, M. Bursik, J. Dehn, M. Jones, R. Madankan, D. Morton, M. Pavolonis, E.B. Pitman, S. Pouget, T. Singh et al., Challenges in developing DDDAS based methodology for volcanic ash hazard analysis–effect of numerical weather prediction variability and parameter estimation. Proc. Comput. Sci. 18, 1871–1880 (2013)
CrossRef
Google Scholar
A. Rodriguez, D.B. Dunson, A.E. Gelfand, The nested Dirichlet process. J. Am. Stat. Assoc. 103(483), 1131–1154 (2008)
MathSciNet
MATH
CrossRef
Google Scholar
H. Seybold, S. Ravela, P. Tagade, Ensemble Learning in Non-Gaussian Data Assimilation (Springer, Cham, 2015), pp. 227–238
Google Scholar
Y.W. Teh, M.I. Jordan, M.J. Beal, D.M. Blei, Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)
MathSciNet
MATH
CrossRef
Google Scholar
A. Vodacek, J.P. Kerekes, M.J. Hoffman, Adaptive optical sensing in an object tracking DDDAS. Proc. Comput. Sci. 9, 1159–1166 (2012)
CrossRef
Google Scholar
L.A. Waller, B.P. Carlin, H. Xia, A. Gelfand, Hierarchical spatio-temporal mapping of disease rates. J. Am. Stat. Assoc. 92, 607–617 (1997)
MATH
CrossRef
Google Scholar
R.E. Watkins, S. Eagleson, B. Veenendaal, G. Wright, A.J. Plant, Disease surveillance using a hidden Markov model. BMC Med. Inform. Decis. Mak. 9(1), 1 (2009)
Google Scholar
J. Zou, A.F. Karr, D. Banks, M.J. Heaton, G. Datta, J. Lynch, F. Vera, Bayesian methodology for the analysis of spatial–temporal surveillance data. Stat. Anal. Data Min. 5(3), 194–204 (2012)
MathSciNet
MATH
CrossRef
Google Scholar
J. Zou, A.F. Karr, G. Datta, J. Lynch, S.J. Grannis, A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study. BMC Med. Inform. Decis. Mak. 14(108), 1–18 (2014)
Google Scholar