Skip to main content

Design of a Dynamic Data-Driven System for Multispectral Video Processing

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

Driven by recent advances in video capture technology, multispectral video analytics is gaining increased interest due to its potential to exploit increased spectral resolution and diversity across sets of multispectral bands. In this chapter, methods are developed for integrated band subset selection and video processing parameter optimization in multispectral video processing. The methods are designed to systematically trade off processing requirements and accuracy, as well as to maximize accuracy for a given set of processed bands. Using the proposed methods together with the Dynamic Data Driven Applications Systems (DDDAS) paradigm, dynamic constraints and measurements can be incorporated into embedded software adaptation in real-time, bandwidth-constrained applications. While the methods developed in the chapter are demonstrated concretely in the context of background subtraction, the underlying approach is more general and can be adapted to other video analysis solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aved, A.J., Blasch, E.P., Peng, J.: Regularized difference criterion for computing discriminants for dimensionality reduction. IEEE Transactions on Aerospace and Electronic Systems 53(5), 2372–2384 (2017)

    Article  Google Scholar 

  2. Babayan, P.V., Smirnov, S.A., Strotov, V.V., Muraviev, V.S., Ershov, M.D.: Object tracking algorithm based on the multispectral template matching. In: Proceedings of the Mediterranean Conference on Embedded Computing (2018)

    Google Scholar 

  3. Bebelis, V., Fradet, P., Girault, A., Lavigueur, B.: BPDF: A statically analyzable dataflow model with integer and Boolean parameters. In: Proceedings of the International Workshop on Embedded Software. pp. 1–10 (2013)

    Google Scholar 

  4. Benezeth, Y., Sidibé, D., Thomas, J.B.: Background subtraction with multispectral video sequences. In: Proceedings of the Workshop on Non-classical Cameras, Camera Networks and Omnidirectional Vision (2014)

    Google Scholar 

  5. Bhateja, V., Srivastava, A., Moin, A., Lay-Ekuakille, A.: NSCT based multispectral medical image fusion model. In: Proceedings of the IEEE International Symposium on Medical Measurements and Applications. pp. 1–5 (2016)

    Google Scholar 

  6. Bhattacharya, B., Bhattacharyya, S.S.: Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing 49(10), 2408–2421 (October 2001)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Pu, H., Wang, B., Jiang, G.M.: Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods. IEEE Geoscience and Remote Sensing Letters 11(8), 1418–1422 (2014)

    Article  Google Scholar 

  8. Ferrato, L.J., Forsythe, K.W.: Comparing hyperspectral and multispectral imagery for land classification of the lower Don River, Toronto. Journal of Geography and Geology 5(1), 92–107 (2013)

    Google Scholar 

  9. Li, H., Sudusinghe, K., Liu, Y., Yoon, J., van der Schaar, M., Blasch, E., Bhattacharyya, S.S.: Dynamic, data-driven processing of multispectral video streams. IEEE Aerospace & Electronic Systems Magazine 32(7), 50–57 (2017)

    Article  Google Scholar 

  10. Liu, Z., Blasch, E., John, V.: Statistical comparison of image fusion algorithms: Recommendations. Information Fusion 36, 251–260 (2017)

    Article  Google Scholar 

  11. Liu, Z., Blasch, E., Xue, Z., Zhao, J., Laganiere, R., Wu, W.: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(1), 94–109 (2012)

    Article  Google Scholar 

  12. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Communications of the ACM 55(6), 61–69 (2012)

    Article  Google Scholar 

  13. Rangnekar, A., Lentilucci, E., Kanan, C., Hoffman, M.J.: Uncertainty Estimation for Semantic Segmentation of Hyperspectral Imagery, International Conference on Dynamic Data Driven Application Systems, 163–170, Springer, 2020.

    Google Scholar 

  14. Reddy, B.C.S., Shah, P., Merchant, S.N., Desai, U.B.: Visualization of multispectral video with moving background based on background extraction and fusion. In: Proceedings of the International Conference on Information, Communications and Signal Processing. pp. 1–5 (2011)

    Google Scholar 

  15. Scebba, G., Da Poian, G., Karlen, W.: Multispectral video fusion for non-contact monitoring of respiratory rate and apnea. IEEE Transactions on Biomedical Engineering 68(1), 350–359 (2021)

    Article  Google Scholar 

  16. Sepulveda, J., Velastin, S.A.: F1 score assesment of Gaussian mixture background subtraction algorithms using the MuHAVi dataset. In: Proceedings of the International Conference on Imaging for Crime Prevention and Detection. pp. 1–6 (2015)

    Google Scholar 

  17. Shen, C., Plishker, W., Bhattacharyya, S.S.: Dataflow-based design and implementation of image processing applications. In: Guan, L., He, Y., Kung, S. (eds.) Multimedia Image and Video Processing, pp. 609–629. CRC Press, second edn. (2012), http://www.crcpress.com/product/isbn/9781439830864, chapter 24

  18. Sobral, A., Javed, S., Jung, S.K., Bouwmans, T., Zahzah, E.: Online stochastic tensor decomposition for background subtraction in multispectral video sequences. In: Proceedings of the International Conference on Computer Vision Workshop. pp. 946–953 (2015)

    Google Scholar 

  19. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1999)

    Google Scholar 

  20. Sudusinghe, K., Won, S., van der Schaar, M., Bhattacharyya, S.S.: A novel framework for design and implementation of adaptive stream mining systems. In: Proceedings of the IEEE International Conference on Multimedia and Expo. pp. 1–6. San Jose, California (July 2013), http://ieeexplore.ieee.org

  21. Uzkent, B., Hoffman, M. J., Vodacek, A.: Integrating Hyperspectral Likelihoods in a Multidimensional Assignment Algorithm for Aerial Vehicle Tracking. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(9), 4325–4333 (2016), https://doi.org/10.1109/JSTARS.2016.2560220.

    Google Scholar 

  22. Wei, Q., Bioucas-Dias, J., Dobigeon, N., Tourneret, J.Y.: Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Transactions on Geoscience and Remote Sensing 53(7), 3658–3668 (2015)

    Article  Google Scholar 

  23. Xie, Q., Zhou, M., Zhao, Q., Meng, D., Zuo, W., Xu, Z.: Multispectral and hyperspectral image fusion by MS/HS fusion net. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1585–1594 (2019)

    Google Scholar 

  24. Zheng, Y., Blasch, E., Liu, Z.: Multispectral Image Fusion and Colorization, SPIE Press, 2018

    Google Scholar 

  25. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the International Conference on Pattern Recognition. pp. 28–31 (2004)

    Google Scholar 

  26. Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27(7), 773–780 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Air Force Office of Scientific Research as part of the DDDAS Program. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of AFRL, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik P. Blasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H. et al. (2022). Design of a Dynamic Data-Driven System for Multispectral Video Processing. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-74568-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74568-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74567-7

  • Online ISBN: 978-3-030-74568-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics