Skip to main content

Enhanced Droop Control Strategy for Three-Phase Islanded Microgrid Without LBC Lines

  • Chapter
  • First Online:
Modeling and Control of Power Electronic Converters for Microgrid Applications
  • 899 Accesses

Abstract

In this chapter, the equivalence between secondary control scheme and washout filter-based power sharing strategy for islanded microgrid is demonstrated, and the generalized washout filter control scheme is derived. Then, the physical meaning of control parameters of secondary controllers is illustrated. Besides, a complete small-signal model of the generalized washout filter-based control method for islanded MG system is built, which can be utilized to design the control parameters and analyze the stability of MG system. Moreover, the simulation results obtained from EMTP-ATP are given to illustrate the difference between the conventional droop control scheme and the washout filter-based improved droop control scheme, and hardware-in-the-loop results are also presented to show a comparative analysis under generic operating conditions. Finally, the experimental results from a reduced-scale prototype system are provided to confirm the validity and effectiveness of the derived equivalent control scheme for three-phase islanded MG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, K., Ai, Q., Wang, S. Y., Ni, J. M., & Lv, T. G. (2016). Microgrid system based on small-signal dynamic model. IEEE Transactions on Smart Grid, 7(2), 695–705.

    Google Scholar 

  2. Mohamed, Y. A. R. I., & Radwan, A. A. (2011). Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems. IEEE Transactions on Smart Grid, 6(4), 352–362.

    Article  Google Scholar 

  3. Nutkani, I. U., Loh, P. C., Wang, P., & Blaabjerg, F. (2016). Linear decentralized power sharing schemes for economic operation of AC microgrids. IEEE Transactions on Industrial Electronics, 63(1), 225–234.

    Article  Google Scholar 

  4. T. Wu, Z. Liu, J. J Liu, S. Wang and Z. Y. You, “A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids,” IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5587–5603, 2016.

    Google Scholar 

  5. Ahmadi, S., Bevrani, H., Shokoohi, S., & Hasanii, E. (2015). An improved droop control for simultaneous voltage and frequency regulation in an AC microgrid using fuzzy logic. In Proc. 23rd Iranian Conf. on Electrical Engineering (ICEE) (pp. 1486–1491).

    Google Scholar 

  6. Chiang, H. C., Jen, K. K., & You, G. H. (2016). Improved droop control method with precise current sharing and voltage regulation. IET Generation Transmission and Distribution, 9(4), 789–800.

    Google Scholar 

  7. Dıaz, N. L., Wu, D., Dragicevic, T., Vasquez, J. C., & Guerrero, J. M. (2015). Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system. In Proc. 9th International Power Electronics and Motion Control Conf. (ECCE) (pp. 1–5).

    Google Scholar 

  8. He, D. W., Shi, D., & Sharma, R. (2014). Consensus-based distributed cooperative control for microgrid voltage regulation and reactive power sharing. In Proc. IEEE PES Innov. Smart Grid Technol. Conf. Europe (ISGT-Europe), Istanbul, Turkey, (pp. 1–6).

    Google Scholar 

  9. Bidram, A., Davoudi, A., & Lewis, F. L. (2014). Two-layer distributed cooperative control of multi-inverter microgrids. In Proc. IEEE 29th Annu. Appl. Power Electron. Conf. Expo. (APEC), Fort Worth, TX, USA, (pp. 2364–2371).

    Google Scholar 

  10. Yazdanian, M., & Sani, A. M. (2016). Washout filter-based power sharing. IEEE Transactions on Smart Grid, 7(2), 967–968.

    Google Scholar 

  11. Guerrero, J. M., Chandorkar, M., Lee, T., & Loh, P. C. (2013). Advanced control architectures for intelligent microgrids-part I: Decentralized and hierarchical control. IEEE Transactions on Industrial Electronics, 60(4), 1254–1262.

    Article  Google Scholar 

  12. Palizban, O., & Kaohaniemi, K. (2015). Hierarchical control structure in microgrids with distributed generation: island and grid-connected mode. Renewable and Sustainable Energy Reviews, 44, 797–813.

    Article  Google Scholar 

  13. Shafiee, Q., Stefanovic, C., Dragicevic, T., Popovski, P., Vasquez, J. C., & Guerrero, J. M. (2014). Robust networked control scheme for distributed secondary control of islanded microgrids. IEEE Transactions on Industrial Electronics, 61(10), 5363–5374.

    Article  Google Scholar 

  14. Wang, P. B., Lu, X. N., Yang, X., Wang, W., & Xu, D. G. (2015). An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance. IEEE Transactions on Power Electronics, 31(9), 6658–6673.

    Article  Google Scholar 

  15. Zhang, H. G., Kim, S., Sunand, Q. Y., & Zhou, J. G. Distributed adaptive virtual impedance controlfor accurate reactive power sharing basedon consensus control in microgrids. IEEE Transactions on Smart Grid, to be published. https://doi.org/10.1109/TSG.2015.2506760

  16. Yu, K., Ai, Q., Wang, S. Y., Ni, J. M., & Lv, T. G. (2016). Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model. IEEE Transactions on Smart Grid, 7(2), 695–705.

    Google Scholar 

  17. Pogaku, N., Prodanovic, M., & Green, T. C. (2006). Inverter-based microgrids: Small-signal modelling and testing. In Proc. 3rd International Power electronics, machines and drives (PEMD) Conf.

    Google Scholar 

  18. Mohamed, Y. A. R. I., & Saadany, E. F. E. (Nov. 2008). Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Transactions on Power Electronics, 23(6), 2806–2816.

    Article  Google Scholar 

  19. Han, Y., Li, H., Xu, L., Zhao, X., & Guerrero, J. M. (2018). Analysis of washout filter-based power sharing strategy – An equivalent secondary controller for islanded microgrid without LBC lines. IEEE Transactions on Smart Grid, 9(5), 4061–4076.

    Article  Google Scholar 

  20. Rasheduzzaman, M., Mueller, J. A., & Kimball, J. W. (2014). An accurate small-signal model of inverter-dominated islanded microgrids using dq reference frame. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(4), 1070–1080.

    Article  Google Scholar 

  21. Pogaku, N., Prodanovic, M., & Green, T. C. (2007). Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Transactions on Power Electronics, 22(2), 613–625.

    Article  Google Scholar 

  22. Olivares, D. E., Sani, A. M., Etemadi, A. H., Cañizares, C. A., Iravani, R., Kazerani, M., Hajimiragha, A. H., Canizares, C. A., Iravani, R., Kazerani, M., Hajimiragha, A. H., Bellmunt, O. G., Saeedifard, M., Behnke, R. P., Estévez, G. A. J., & Hatziargyriou, N. D. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 1905–1919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix A

Appendix A

The matrix TBPF of power stage is derived as (6.A.1), and the elements in matrix TBPF are depicted as (6.A.2) and (6.A.3):

$$ {\mathbf{T}}_{\mathbf{BPF}}={\left[\begin{array}{ccccc}-{\omega}_h& {k}_2{\omega}_c& 0& 0& 0\\ {}0& -{\omega}_c& 0& 0& 0\\ {}0& 0& -{\omega}_c& 0& 0\\ {}-{v}_q& 0& {k}_3{v}_d& -\frac{\omega_h{v}_d^2}{v_d^2+{v}_q^2}& -\frac{\omega_h{v}_d{v}_q}{v_d^2+{v}_q^2}\\ {}{v}_d& 0& {k}_3{v}_q& -\frac{\omega_h{v}_d{v}_q}{v_d^2+{v}_q^2}& -\frac{\omega_h{v}_q^2}{v_d^2+{v}_q^2}\end{array}\right]}_{5\times 5} $$
(6.A.1)
$$ {k}_1=\frac{n_q}{1+{k}_{p E}},\kern1.6em {k}_2=\frac{m_p}{1+{k}_{p\omega}},\kern1.6em {k}_3=\frac{k_1{\omega}_c\sqrt{v_d^2+{v}_q^2}}{v_d^2+{v}_q^2}. $$
(6.A.2)
$$ {\omega}_{h E}=\frac{k_{i E}}{1+{k}_{p E}},{\omega}_{h\omega}=\frac{k_{i\omega}}{1+{k}_{p\omega}}. $$
(6.A.3)

The matrices CV, DV1, DV2, and BV2 in the inner voltage controller are derived as:

$$ {\mathbf{C}}_{\mathbf{V}}={\left[\begin{array}{cc}{k}_{iv}& 0\\ {}0& {k}_{iv}\end{array}\right]}_{2\times 2},\kern1.6em {\mathbf{D}}_{\mathbf{V}\mathbf{2}}={\left[\begin{array}{cccccc}0& 0& -{k}_{pv}& -{\omega}^{\ast }{C}_f& F& 0\\ {}0& 0& {\omega}^{\ast }{C}_f& -{k}_{pv}& 0& F\end{array}\right]}_{2\times 6} $$
(6.A.4)
$$ {\mathbf{D}}_{\mathbf{V1}}={\left[\begin{array}{cc}{k}_{pv}& 0\\ {}0& {k}_{pv}\end{array}\right]}_{2\times 2},\kern1em {\mathbf{C}}_{\mathbf{C}}={\left[\begin{array}{cc}{k}_{ic}& 0\\ {}0& {k}_{ic}\end{array}\right]}_{2\times 2},\kern1em {\mathbf{B}}_{\mathbf{V2}}={\left[\begin{array}{cccccc}0& 0& -1& 0& 0& 0\\ {}0& 0& 0& -1& 0& 0\end{array}\right]}_{2\times 6}. $$
(6.A.5)

The matrices CC, DC1, DC2, and BC2 in the inner current controller are derived as:

$$ {\mathbf{D}}_{\mathbf{C2}}={\left[\begin{array}{cccccc}-{k}_{pc}& -{\omega}^{\ast }{L}_f& 0& 0& 0& 0\\ {}{\omega}^{\ast }{L}_f& -{k}_{pc}& 0& 0& 0& 0\end{array}\right]}_{2\times 6}. $$
(6.A.6)
$$ {\mathbf{D}}_{\mathbf{C1}}={\left[\begin{array}{cc}{k}_{pc}& 0\\ {}0& {k}_{pc}\end{array}\right]}_{2\times 2},\kern1.6em {\mathbf{B}}_{\mathbf{C2}}={\left[\begin{array}{cccccc}-1& 0& 0& 0& 0& 0\\ {}0& -1& 0& 0& 0& 0\end{array}\right]}_{2\times 6}. $$
(6.A.7)

The matrices ALCL, BLCL1, BLCL2, and BLCL3 in (6.20) are derived as (6.A.8) and (6.A.9).

$$ {\mathbf{A}}_{\mathbf{LCL}}={\left[\begin{array}{cccccc}-\frac{r_{L_f}}{L_f}& {\omega}^{\ast }& -\frac{1}{L_f}& 0& 0& 0\\ {}-{\omega}^{\ast }& -\frac{r_{L_f}}{L_f}& 0& -\frac{1}{L_f}& 0& 0\\ {}\frac{1}{C_f}& 0& 0& {\omega}^{\ast }& -\frac{1}{C_f}& 0\\ {}0& \frac{1}{C_f}& -{\omega}^{\ast }& 0& 0& -\frac{1}{C_f}\\ {}0& 0& \frac{1}{L_c}& 0& -\frac{r_{L_c}}{L_c}& {\omega}^{\ast}\\ {}0& 0& 0& \frac{1}{L_c}& -{\omega}^{\ast }& -\frac{r_{L_c}}{L_c}\end{array}\right]}_{6\times 6} $$
(6.A.8)
$$ {\mathbf{B}}_{\mathbf{LCL1}}={\left[\begin{array}{cc}\frac{1}{L_f}& 0\\ {}0& \frac{1}{L_f}\\ {}0& 0\\ {}0& 0\\ {}0& 0\\ {}0& 0\end{array}\right]}_{6\times 2},\kern1em {\mathbf{B}}_{\mathbf{LCL2}}={\left[\begin{array}{cc}0& 0\\ {}0& 0\\ {}0& 0\\ {}0& 0\\ {}-\frac{1}{L_c}& 0\\ {}0& -\frac{1}{L_c}\end{array}\right]}_{6\times 2},\kern1em {\mathbf{B}}_{\mathbf{LCL3}}={\left[\begin{array}{c}{I}_{lq}\\ {}-{I}_{ld}\\ {}{V}_{oq}\\ {}-{V}_{od}\\ {}{I}_{oq}\\ {}-{I}_{od}\end{array}\right]}_{6\times 1}. $$
(6.A.9)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, Y. (2022). Enhanced Droop Control Strategy for Three-Phase Islanded Microgrid Without LBC Lines. In: Modeling and Control of Power Electronic Converters for Microgrid Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-74513-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74513-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74512-7

  • Online ISBN: 978-3-030-74513-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics