Skip to main content

Geometric Calculus Applications to Medical Imaging: Status and Perspectives

  • Conference paper
  • First Online:
Systems, Patterns and Data Engineering with Geometric Calculi

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 13))

Abstract

Medical imaging data coming from different acquisition modalities requires automatic tools to extract useful information and support clinicians in the formulation of accurate diagnoses. Geometric Calculus (GC) offers a powerful mathematical and computational model for the development of effective medical imaging algorithms. The practical use of GC-based methods in medical imaging requires fast and efficient implementations to meet real-time processing constraints as well as accuracy and robustness requirements. The purpose of this article is to present the state of the art of the GC-based techniques for medical image analysis and processing. The use of GC-based paradigms in Radiomics and Deep Learning, i.e. a comprehensive quantification of tumor phenotypes by applying a large number of quantitative image features and its classification, is also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Kluwer, Dordrecht, The Netherlands (1987)

    MATH  Google Scholar 

  2. Rivera-Rovelo, J., Bayro-Corrochano, E.: Medical image segmentation using a self-organizing neural network and Clifford geometric algebra. Int. Joint Conf. Neural Netw. IJCNN 2006, 3538–3545 (2006)

    Google Scholar 

  3. Rivera-Rovelo, J., Bayro-Corrochano, E.: Surface approximation using growing self-organizing nets and gradient information. Appl. Bionics Biomech. 4(3), 125–136 (2007)

    Article  MATH  Google Scholar 

  4. Bayro-Corrochano, E., Rivera-Rovelo, J.: The use of geometric algebra for 3D modeling and registration of medical data. J. Math. Imaging Vis. 34(1), 48–60 (2009)

    Article  MathSciNet  Google Scholar 

  5. Franchini, S., Gentile, A., Sorbello, F., Vassallo, G., Vitabile, S.: ConformalALU: a conformal geometric algebra coprocessor for medical image processing. IEEE Trans. Comput. 64(4), 955–970 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Franchini, S., Gentile, A., Vassallo, G., Vitabile, S.: Implementation and evaluation of medical imaging techniques based on conformal geometric algebra. Int. J. Appl. Math. Comput. Sci. (IJAMCS) 30(3), 415–433 (2020)

    MATH  Google Scholar 

  7. Hitzer, E.: The Clifford Fourier transform in real Clifford algebras. J. Fourier Anal. Appl. 2(3), 669–681 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on vector fields. Proc. IEEE Visual. 2003, 193–200 (2003)

    Google Scholar 

  9. Ebling, J., Scheuermann, G.: Clifford fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4), 469–479 (2005)

    Article  Google Scholar 

  10. Schlemmer, M., Hagen, H., Holtz, I., Hamann, B.: Clifford pattern matching for color image edge detection, in visualization of large and unstructured data sets. GI Edition Lecture Notes in Informatics (LNI), vol. S-4, pp. 47–58 (2006)

    Google Scholar 

  11. Franchini, S., Gentile, A., Vassallo, G., Vitabile, S., Sorbello, F.: Clifford algebra based edge detector for color images. In: Proceedings 6th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2012), Palermo, Italia, July 2012, pp. 84–91 (2012). https://doi.org/10.1109/CISIS.2012.128

  12. Franchini, S., Gentile, A., Vassallo, G., Vitabile, S., Sorbello, F.: A specialized architecture for color image edge detection based on clifford algebra. In: Proceedings 7th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2013), Taichung, Taiwan, July 2013, pp. 128–135 (2013). https://doi.org/10.1109/CISIS.2013.29.

  13. Bulow, T., Sommer, G.: Quaternionic Gabor filters for local structure classification. In: Proceedings Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170), Brisbane, Queensland, Australia, 1998, vol.1, pp. 808–810 (1998). https://doi.org/10.1109/ICPR.1998.711271.

  14. Hirose, A.: Complex-Valued Neural Networks. Studies in Computational Intelligence, Springer (2012)

    Google Scholar 

  15. Buchholz, S., Sommer, G.: Clifford algebra multilayer perceptrons. In: Sommer, G. (eds.) Geometric Computing with Clifford Algebras. Springer, Heidelberg (2001)

    Google Scholar 

  16. Buchholz, S., Sommer, G.: On Clifford neurons and Clifford multi-layer perceptrons. Neural Netw. 21(7), 925–935 (2008)

    Google Scholar 

  17. Pearson, J.K., Bisset, D.L.: Neural networks in the Clifford domain, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN 1994), Orlando, FL, USA, 1994, vol.3, pp. 1465–1469 (1994). https://doi.org/10.1109/ICNN.1994.374502.

  18. Deng, N., et al.: Support Vector Machines: Optimization Based Theory, Algorithms and Extensions. Chapman & Hall /CRC. Data mining and Knowledge Discovery Series (2012)

    Google Scholar 

  19. Weston, J., Watkins, C.: Multi-class support vector machines. In: Verleysen, M. (eds.) Proceedings of ESANN99, pp. 219–224, Brussels. D. Facto Press (1999)

    Google Scholar 

  20. Bayro-Corrochano, E.J., Arana, N., Vallejo, R.: Design of kernels for support multivector machines involving the Clifford geometric product and the conformal geometric neuron. In: International joint conference on neural networks, pp. 2893–2898. IEEE (2003)

    Google Scholar 

  21. Bayro-Corrochano, E.J., Arana-Daniel, N.: Clifford support vector machines for classification, regression, and recurrence. IEEE Trans. Neural Net. 21(11), 1731–1746 (2010)

    Article  Google Scholar 

  22. Zhang, Y., Wang, S., Ji, G., Dong, Z.: An MR brain images classifier system via particle swarm optimization and Kernel support vector machine. Sci. World J. 2013, 9 (2013)

    Google Scholar 

  23. Franchini, S., Terranova, M.C., Lo Re, G., Salerno, S., Midiri, M., Vitabile, S.: Evaluation of a support vector machine based method for Crohn’s disease classification. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Neural Approaches to Dynamics of Signal Exchanges, pp. 313–327. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8950-4_29

    Chapter  Google Scholar 

  24. Franchini, S., Terranova, M.C., Lo Re, G., Galia, M., Salerno, S., Midiri, M., Vitabile, S.: A novel system for multi-level Crohn’s disease classification and grading based on a multiclass support vector machine. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Progresses in Artificial Intelligence and Neural Systems, pp. 185–197. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5093-5_18

    Chapter  Google Scholar 

  25. Lowe, D.G.: Object recognition from local scale-invariant features. Int. Conf. Comput. Vis. 2(1999), 1150–1157 (1999)

    Google Scholar 

  26. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: European conference on computer vision, pp. 404–417 (2006)

    Google Scholar 

  27. Insalaco M., Bruno A., Farruggia A., Vitabile S., Ardizzone E.: An unsupervised method for suspicious regions detection in mammogram images. In: Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM-2015), SCITEPRESS Lda, pp. 302–308 (2015). https://doi.org/10.5220/0005277103020308 ISBN: 978–989–758–077–2

  28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  29. Li, Y., Liu, W., Li, X., Huang, Q., Li, X.: GA-SIFT: a new scale invariant feature transform for multispectral image using geometric algebra. Inf. Sci. 281, 559–572 (2014)

    Article  MathSciNet  Google Scholar 

  30. Wang, R., Shi, Y., Cao, W.: GA-SURF: a new speeded-up robust feature extraction algorithm for multispectral images based on geometric algebra. Pattern Recogn. Lett. 127, 11–17 (2019)

    Article  Google Scholar 

  31. Wang, R., Zhang, W., Shi, Y., Wang, X., Cao, W.: GA-ORB: a new efficient feature extraction algorithm for multispectral images based on geometric algebra. IEEE Access 7, 71235–71244 (2019). https://doi.org/10.1109/ACCESS.2019.2918813

    Article  Google Scholar 

  32. Mishra, B., Wilson, P., Wilcock, R.: A geometric algebra coprocessor for color edge detection. Electronics 4(1), 94–117 (2015)

    Article  Google Scholar 

  33. Chan, I., Wells 3rd., W., Mulkern, R.V., Haker, S., Zhang, J., Zou, K.H., Maier, S.E., Tempany, C.M.: Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med. Phys. 30(9), 2390–2398 (2003). https://doi.org/10.1118/1.1593633

    Article  Google Scholar 

  34. Bae, H., Kim, S.-S., Lee, S., Song, H., Lee, S., Koh, D., Kim, J.G., Jung, D.C.: Development of a multi-channel NIRS-USG hybrid imaging system for detecting prostate cancer and improving the accuracy of imaging-based diagnosis: a phantom study. Ultrasonography 38(2), 143–148 (2019). https://doi.org/10.14366/usg.18030

    Article  Google Scholar 

  35. Rundo, L., Han, C., Nagano, Y., Zhang, J., Hataya, R., Militello, C., Tangherloni, A., Nobile, M.S., Ferretti, C., Besozzi, D., Gilardi, M.C., Vitabile, S., Mauri, G., Nakayama, H., Cazzaniga, P.: USE-Net: incorporating squeeze-and-excitation blocks into U-net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing 365, 31–43 (2019). https://doi.org/10.1016/j.neucom.2019.07.006

    Article  Google Scholar 

  36. Yin, X.X., Hadjiloucas, S., Chen, J.H., Zhang, Y., Wu, J.L., Su, M.Y.. Tensor based multichannel reconstruction for breast tumours identification from DCE-MRIs. PLoS One 12(3), e0172111 (2017). https://doi.org/10.1371/journal.pone.0172111.

  37. Banerjee, S., Sushmita Mitra, B., Shankar, U., Hayashi, Y.: A novel GBM saliency detection model using multi-channel MRI. PLoS ONE 11(1), e0146388 (2016). https://doi.org/10.1371/journal.pone.0146388

    Article  Google Scholar 

  38. Pei, S.C., Cheng, C.M.: A novel block truncation coding of color images by using quaternion-moment-preserving principle. Connecting the World. In: IEEE International Symposium on Circuits and Systems, ISCAS 1996, pp. 684–687 (1996)

    Google Scholar 

  39. Sangwine, S.: Fourier transforms of colour images using quaternion or hypercomplex numbers. Electron. Lett. 32(21), 1979–1980 (1996)

    Article  Google Scholar 

  40. Sangwine, S., Ell, T.: Colour image filters based on hypercomplex convolution. IEE Proc. Vis. Image Signal Process. 147(2), 89–93 (2000)

    Article  Google Scholar 

  41. Ell, T., Sangwine, S.: Hypercomplex fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007). (PubMed: 17283762)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sangwine, S.: Colour image edge detector based on quaternion convolution. Electron. Lett. 34(10), 969–971 (1998)

    Article  Google Scholar 

  43. Moxey, C., Sangwine, S., Ell, T.: Hypercomplex correlation techniques for vector images. IEEE Trans. Signal Process. 51(7), 1941 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lazendić, S., De Bie, H., Pižurica, A.: Octonion sparse representation for color and multispectral image processing. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 608–612 (2018)

    Google Scholar 

  45. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016). https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  46. Cameron, A., Khalvati, F., Haider, M.A., Wong, A.: MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans. Biomed. Eng. 63(6), 1145–1156 (2016)

    Article  Google Scholar 

  47. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  48. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  49. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)

    Article  Google Scholar 

  50. Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Levy, N., et al.: Shape and texture indexes application to cell nuclei classification. Int. J. Pattern Recogn. Artif. Intell. 27(01), 1545 (2013)

    Article  MathSciNet  Google Scholar 

  51. Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G., Granton, P., Zegers, C.M., Gillies, R., Boellard, R., Dekker, A., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  52. Delsuc, M.A.: Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77(1), 119–124 (1988)

    Google Scholar 

  53. Ell, T.: Quaternion-fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proceedings of the 32nd IEEE Conference on Decision and Control, December 1993, pp. 1830–1841 (1993)

    Google Scholar 

  54. Bülow, T., Sommer, G.: Das Konzept einer zweidimensionalen Phase unter Verwendung einer algebraisch erweiterten Signalrepräsentation. In: Paulus, E., Wahl, F.M. (eds.) Mustererkennung 1997, pp. 351–358. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-60893-3_37

    Chapter  Google Scholar 

  55. Subakan, O.N., Vemuri, B.C.: Color image segmentation in a quaternion framework. Energy Minimization Methods Comput. Vis. Pattern Recogn. 1(5681), 401–414 (2009). https://doi.org/10.1007/978-3-642-03641-5_30

  56. Fletcher, P.: Discrete wavelets with quaternion and clifford coefficients. Adv. Appl. Clifford Algebras 28, 59 (2018). https://doi.org/10.1007/s00006-018-0876-5

    Article  MathSciNet  MATH  Google Scholar 

  57. Yamashita, R., Nishio, M., Do, R.K.G., et al.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  58. Bayro-Corrochano, E., Vallejo, R., Arana-Daniel, N.: Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing 67, 54–105 (2005). https://doi.org/10.1016/j.neucom.2004.11.041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Franchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franchini, S., Vitabile, S. (2021). Geometric Calculus Applications to Medical Imaging: Status and Perspectives. In: Xambó-Descamps, S. (eds) Systems, Patterns and Data Engineering with Geometric Calculi. SEMA SIMAI Springer Series(), vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-74486-1_3

Download citation

Publish with us

Policies and ethics