Skip to main content

Genomic Resources for Breeding in Alfalfa: Availability, Utility, and Adoption

  • Chapter
  • First Online:
The Alfalfa Genome

Abstract

Alfalfa breeding still relies predominantly on recurrent phenotypic selection and breeder’s experience, but the adoption of breeding strategies relying on genomics information is gaining momentum quickly as tools and knowledge become more accessible. To accelerate alfalfa improvement using genomics, the community needs to establish reliable marker sets that track parental relationships, as well as provide affordable, repeatable genotyping methods to move towards marker assisted selection and genomic selection. However, access to genomic resources is not sufficient to make genotype-based selections. It is crucial that breeders capture phenotypes widely (across desirable and undesirable individuals) and generate such data in large quantities with high quality (not addressed in this chapter). For breeders unfamiliar or new to genomic analyses, the utilization of phenotypic and genotypic data to make decisions is a knowledge gap they may not be able to bridge on their own. Therefore, a public-sector initiative has been put in place to aid breeders and hasten the adoption of new technologies, including high-throughput genotyping, to accelerate breeding and pre-breeding efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikair L, Orville ML, Jonathan M, Missaoui AM (2018) Dissecting key adaptation traits in the polyploid perennial medicago sativa using gbs-snp mapping. Front Plant Sci 9:934

    Article  Google Scholar 

  • Adhikari L, Makaju SO, Missaoui AM (2019) QTL Mapping of flowering time and biomass yield in tetraploid alfalfa (Medicago sativa L). BMC Plant Biol 19(1):359

    Article  Google Scholar 

  • Anderson CB, Franzmayr BK, Hong SW, Larking AC, Van Stijn TC, Roger Moraga RT, Faville MJ, Griffiths AG (2018) Protocol: a versatile, inexpensive, high-throughput plant genomic DNA extraction method suitable for genotyping-by-sequencing. Plant Methods 14:75

    Article  Google Scholar 

  • Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genom 16:1020

    Article  Google Scholar 

  • Annicchiarico P, Nazzicari N, Ananta A, Carelli M, Wei Y, Brummer EC (2016) Assessment of cultivar distinctness in alfalfa: a comparison of genotyping-by-sequencing, simple-sequence repeat marker, and morphophysiological observations. Plant Genome 9(2):1–12

    Article  CAS  Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6(8):914–920

    Article  Google Scholar 

  • Biazzi E, Nazzicari N, Pecetti L, Brummer EC, Palmonari A, Tava A, Annicchiarico P (2017) Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS One 12(1):

    Article  Google Scholar 

  • Bingham ET, McCoy TJ (1979) Cultivated alfalfa at the diploid level: origin, reproductive stability, and yield of seed and forage. Crop Sci 19(1):97–100

    Article  Google Scholar 

  • Brummer EC, Bouton JH, Kochert G (1993) Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86(2–3):329–332

    Article  CAS  Google Scholar 

  • Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, Shang Z, Chen J, Wang W, Qiu Q (2020) Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11(1):2494

    Article  CAS  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MA (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108(3):414–422

    Article  CAS  Google Scholar 

  • Fajardo DA, Ramaraj T, Devitt N, Tang HB, Cameron CT, Brummer EC, Town CD, Udvardi MK, Monteros MJ, Farmer AD, Miller JR, Young ND, Mudge J (2016) Sequencing and genome assembly of cultivated alfalfa at the diploid level (CADL) Medicago sativa. In: Proceedings of plant & animal genome conference XXIV, San Diego, CA

    Google Scholar 

  • Han Y, Khu D, Xuehui L, Farmer A, Martinez JM, Brummer EC, Monteros MJ (2014) High density array for SNP genotyping and mapping in tetraploid alfalfa. In: Sokolović D, Huyghe C, Radović J (eds) Quantitative traits breeding for multifunctional grasslands and turf. Springer, Dordrech, Netherlands, pp 255–259

    Google Scholar 

  • Hawkins C, Yu L-X (2018) Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop J 6(6):565–575

    Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9

    Article  Google Scholar 

  • Kiss GB, Csanádi G, Kálmán K, Kaló P, Okrész L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238(1–2):129–137

    Article  CAS  Google Scholar 

  • Lei Y, Xu Y, Hettenhausen C, Lu C, Shen G, Zhang C, Li J, Song J, Lin H, Wu J (2018) Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biol 18(1):35

    Google Scholar 

  • Li X, Acharya A, Farmer AD, Crow JA, Bharti AK, Kramer RS, Wei Y, Han Y, Gou J, May GD, Monteros MJ, Brummer EC (2012) Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genom 13:568

    Article  CAS  Google Scholar 

  • Li X, Han Y, Wei Y, Acharya A, Farmer AD, Ho J, Monteros MJ, Brummer EC (2014a) Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS ONE 9(1):e84329

    Article  Google Scholar 

  • Li X, Wei Y, Acharya A, Jiang Q, Kang J, Brummer EC (2014b) A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3 4(10):1971–1979

    Google Scholar 

  • Li X, Wei Y, Acharya A, Hansen JL, Crawford JL, Viands DR, Michaud R, Claessens A, Brummer EC (2015) Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8(2):eplantgenome2014.12.0090

    Google Scholar 

  • Li A, Liu A, Du X, Chen JY, Yin M, Hu HY, Shrestha N, Wu SD, Wang HQ, Dou QW, Liu ZP, Liu JQ, Yang YZ, Ren GP (2020) A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Hort Res 7(1):19

    Article  CAS  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat a-genome progenitor Triticum irartu. Nature 496(7443):87–90

    Article  CAS  Google Scholar 

  • Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, Nan Z, Wang Y (2013) Global transcriptome sequencing using the illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One 8(12):

    Article  Google Scholar 

  • Liu W, Jia X, Liu Z, Zhang Z, Wang Y, Liu Z, Xie W (2015) Development and characterization of transcription factor gene-derived microsatellite (TFGM) markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Molecules 20(5):8759–8771

    Article  CAS  Google Scholar 

  • Liu ZY, Baoyin T, Li XL, Wang ZL (2019) How fall dormancy benefits alfalfa winter-survival? Physiologic and transcriptomic analyses of dormancy process. BMC Plant Biol 19(1):205–213

    Article  CAS  Google Scholar 

  • Pennycooke JC, Cheng H, Stockinger EJ (2008) Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcatacold-acclimation-specific genes. Plant Physiol 146(3):1242–1254

    Article  CAS  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7(5):

    Article  CAS  Google Scholar 

  • Riday H, Brummer EC, Campbell TA, Luth D, and Cazcarro P (2003) Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica 131(1):37–45

    Google Scholar 

  • Sakiroglu M, Brummer EC (2017) Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theor Appl Genet 130(2):261–268

    Article  CAS  Google Scholar 

  • Sakiroglu M, Sherman-Broyles S, Story A, Moore KJ, Doyle JJ, Charles Brummer E (2012) Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor Appl Genet 125(3):577–590

    Google Scholar 

  • Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15(2):149–161

    Article  CAS  Google Scholar 

  • Shen C, Du H, Chen Z, Lu H, Zhu F, Chen H, Meng X, Liu Q, Liu P, Zheng L, Li X, Dong J, Liang C, Wang T (2020) The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant 13(9):1250–1261

    Article  CAS  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212

    Article  Google Scholar 

  • Sledge MK, Ray IM, Jiang G (2005) An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet 111(5):980–992

    Google Scholar 

  • Tesfaye M, Silverstein KAT, Bucciarelli B, Samac DA, Vance CP (2006) The Affymetrix Medicago GeneChip® array is applicable for transcript analysis of alfalfa (Medicago sativa). Funct Plant Biol 33(8):783–788

    Article  CAS  Google Scholar 

  • Wang J, Zhao Y, Ray I, Song M (2016) Transcriptome responses in alfalfa associated with tolerance to intensive animal grazing. Sci Rep 6:19438

    Article  CAS  Google Scholar 

  • Wang Z, Yan H, Fu X, Li X, Gao H (2013) Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.). Mol Biol Rep 40(4):3291–3298

    Google Scholar 

  • Wang Z, Yu G, Shi B, Wang X, Qiang H, Gao H (2014) Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the M. truncatula genome. PLoS One 9(3):e92029

    Google Scholar 

  • Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, Eserman L, Gemenet DC, Olukolu BA, Wang H, Crisovan E, Godden GT, Jiao C, Wang X, Kitavi M, Manrique-Carpintero N, Vaillancourt B, Wiegert-Rininger K, Yang X, Bao K, Schaff J, Kreuze J, Gruneberg W, Khan A, Ghislain M, Ma D, Jiang J, Mwanga ROM, Leebens-Mack J, Coin LJM, Yencho GC, Buell CR, Fei Z (2018) Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun 9(1):4580

    Article  Google Scholar 

  • Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatulaconfers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105(34):12164–12169

    Google Scholar 

  • You Q, Yang X, Peng Z, Xu L, Wang J (2018) Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci 9:104

    Article  Google Scholar 

  • Zhang F, Kang J, Long R, Yu LX, Wang Z, Zhao Z, Zhang T, Yang Q (2019) High-density linkage map construction and mapping QTL for yield and yield components in autotetraploid alfalfa using RAD-Seq. BMC Plant Biol 19(1):165

    Article  Google Scholar 

  • Zhou Q, Chen T, Wang Y, Liu Z (2014) The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochem Syst Ecol 57:227–230

    Article  CAS  Google Scholar 

  • Zhou P, Silverstein KA, Ramaraj T, Guhlin J, Denny R, Liu J, Farmer AD, Steele KP, Stupar RM, Miller JR, Tiffin P, Mudge J, Young ND (2017) Exploring structural variation and gene family architecture with de novo assemblies of 15 Medicago genomes. BMC Genom 18(1):261

    Article  Google Scholar 

Download references

Acknowledgments

We thank Debby Samac, Mike Peel, Heathcliffe Riday, Ali Missaoui, Esteban Rios, Nevin Young, S&W Seeds, and Legacy Seeds for their contributions to the alfalfa diversity panel, and overall to the ARS alfalfa research community for the valuable discussion during the process of marker discovery and the design of the alfalfa DArTag array. We also acknowledge Kirsten Richardson and Vanessa Greenlee for the proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moira J. Sheehan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mejia-Guerra, M.K., Zhao, D., Sheehan, M.J. (2021). Genomic Resources for Breeding in Alfalfa: Availability, Utility, and Adoption. In: Yu, LX., Kole, C. (eds) The Alfalfa Genome . Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74466-3_11

Download citation

Publish with us

Policies and ethics