Skip to main content

The Coagulative Cascade

  • Chapter
  • First Online:
Direct Oral Anticoagulants
  • 1193 Accesses

Abstract

The blood coagulation cascade is an integral part of hemostasis, a biological process evolved as important defense mechanism to prevent bleeding from a damaged vessel and to restore vascular integrity. By taking place on the surface of activated platelets, aim of coagulation is to generate fibrin meshes that stabilize the platelet plug and thus stop blood loss. Under normal conditions, anticoagulant mechanisms ensure careful control of coagulation and they prevail over the procoagulant forces. Aberrant activation of coagulation can, however, lead to the formation of intravascular clots that underpin pathological thrombotic disorders, including myocardial infarction, stroke, and venous thromboembolism.

In the present chapter, the modern cell-based model of blood coagulation is described emphasizing the different mechanism of action of oral anticoagulants and the related consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrett AJ, Starkey PM. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973;133(4):709–24.

    Article  CAS  Google Scholar 

  • Bom VJ, Bertina RM. The contributions of Ca2+, phospholipids and tissue-factor apoprotein to the activation of human blood-coagulation factor X by activated factor VII. Biochem J. 1990;265(2):327–36.

    Article  CAS  Google Scholar 

  • Brambilla M, et al. Human megakaryocytes confer tissue factor to a subset of shed platelets to stimulate thrombin generation. Thromb Haemost. 2015;114(3):579–92.

    PubMed  Google Scholar 

  • Camera M, et al. Platelet activation induces cell-surface immunoreactive tissue factor expression, which is modulated differently by antiplatelet drugs. Arterioscler Thromb Vasc Biol. 2003;23(9):1690–6.

    Article  CAS  Google Scholar 

  • Camera M, et al. Tissue factor expression on platelets is a dynamic event. Blood. 2010;116(23):5076–7.

    Article  CAS  Google Scholar 

  • Camera M, et al. The role of tissue factor in Atherothrombosis and coronary artery disease: insights into platelet tissue factor. Semin Thromb Hemost. 2015;41(7):737–46.

    Article  CAS  Google Scholar 

  • Dargaud Y, et al. Bleeding risk in warfarinized patients with a therapeutic international normalized ratio: the effect of low factor IX levels. J Thromb Haemost. 2013;11(6):1043–52.

    Article  CAS  Google Scholar 

  • Davidson CJ, Tuddenham EG, McVey JH. 450 million years of hemostasis. J Thromb Haemost. 2003;1(7):1487–94.

    Article  CAS  Google Scholar 

  • Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol. 1989;134(5):1087–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleck RA, et al. Localization of human tissue factor antigen by immunostaining with monospecific, polyclonal anti-human tissue factor antibody. Thromb Res. 1990;59(2):421–37.

    Article  CAS  Google Scholar 

  • Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938–49.

    Article  CAS  Google Scholar 

  • Giugliano RP, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    Article  CAS  Google Scholar 

  • Granger CB, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

    Article  CAS  Google Scholar 

  • Hankey GJ, et al. Intracranial hemorrhage among patients with atrial fibrillation anticoagulated with warfarin or rivaroxaban: the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation. Stroke. 2014;45(5):1304–12.

    Article  CAS  Google Scholar 

  • Hart RG, et al. Intracranial hemorrhage in atrial fibrillation patients during anticoagulation with warfarin or dabigatran: the RE-LY trial. Stroke. 2012;43(6):1511–7.

    Article  CAS  Google Scholar 

  • Haynes LM, Orfeo T, Mann KG. Rivaroxaban delivery and reversal at a venous flow rate. Arterioscler Thromb Vasc Biol. 2012;32(12):2877–83.

    Article  CAS  Google Scholar 

  • Hoffman M, Monroe DM. Impact of non-vitamin K antagonist Oral anticoagulants from a basic science perspective. Arterioscler Thromb Vasc Biol. 2017;37(10):1812–8.

    Article  CAS  Google Scholar 

  • Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature. 2000;407(6806):923–6.

    Article  CAS  Google Scholar 

  • Jerkeman A, et al. Correlation between different intensities of anti-vitamin K treatment and coagulation parameters. Thromb Res. 2000;98(6):467–71.

    Article  CAS  Google Scholar 

  • Kamisato C, Furugohri T, Morishima Y. A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: possible mechanisms of paradoxical enhancement of thrombin generation. Thromb Res. 2016;141:77–83.

    Article  CAS  Google Scholar 

  • Kirchhofer D, Nemerson Y. Initiation of blood coagulation: the tissue factor/factor VIIa complex. Curr Opin Biotechnol. 1996;7(4):386–91.

    Article  CAS  Google Scholar 

  • Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res. 2003;42(5):423–38.

    Article  CAS  Google Scholar 

  • Morrissey JH. Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost. 2001;86(1):66–74.

    CAS  PubMed  Google Scholar 

  • Smith SA, Travers RJ, Morrissey JH. How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015;50(4):326–36.

    Article  CAS  Google Scholar 

  • Tilley R, Mackman N. Tissue factor in hemostasis and thrombosis. Semin Thromb Hemost. 2006;32(1):5–10.

    Article  CAS  Google Scholar 

  • van Es N, et al. Clinical significance of tissue factor-exposing microparticles in arterial and venous thrombosis. Semin Thromb Hemost. 2015;41(7):718–27.

    Article  Google Scholar 

  • von Bruhl ML, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Camera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camera, M. (2021). The Coagulative Cascade. In: Proietti, R., AlTurki, A., Ferri, N., Russo, V., Bunch, T.J. (eds) Direct Oral Anticoagulants. Springer, Cham. https://doi.org/10.1007/978-3-030-74462-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74462-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74461-8

  • Online ISBN: 978-3-030-74462-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics