Skip to main content

Inherited Risk for Childhood Leukemia

  • Chapter
  • First Online:
The Hereditary Basis of Childhood Cancer

Abstract

Childhood leukemia is the most common pediatric malignancy, diagnosed in nearly a third of pediatric cancer patients. Awareness and identification of the hereditary component of childhood leukemia continues to increase. Childhood leukemia, especially acute lymphoblastic leukemia (ALL), has been attributed to a dysregulated immune system with different patterns of infectious exposure at a young age. Candidate gene studies have revealed inconsistent associations with specific SNPs related to folate metabolism, xenobiotic metabolism, DNA repair, immunity, and B-cell development. More recently, genome-wide association studies (GWAS) have demonstrated stronger associations with SNPs in B-cell development genes and increased risk for childhood ALL. Identical twins have been described with childhood leukemia due to presumed placental transfer, but non-twin siblings with childhood leukemia also have been very rarely reported suggesting a genetic link to disease susceptibility. In this chapter, we review the known hereditary cancer syndromes associated with leukemia which can be divided into six categories: (1) DNA repair syndromes, (2) RASopathies, (3) bone marrow failure syndromes, (4) immunodeficiency syndromes, (5) germline predisposition to leukemia, and (6) congenital syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inaba, H., Greaves, M., & Mullighan, C. G. (2013). Acute lymphoblastic leukaemia. Lancet, 381(9881), 1943–1955.

    Article  PubMed  Google Scholar 

  2. Wiemels, J. (2012). Perspectives on the causes of childhood leukemia. Chemico-Biological Interactions, 196(3), 59–67.

    Article  CAS  PubMed  Google Scholar 

  3. Pui, C. H., Relling, M. V., & Downing, J. R. (2004). Acute lymphoblastic leukemia. The New England Journal of Medicine, 350(15), 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  4. Hunger, S. P., & Mullighan, C. G. (2015). Acute Lymphoblastic Leukemia in Children. The New England Journal of Medicine, 373(16), 1541–1552.

    Article  CAS  PubMed  Google Scholar 

  5. Kaspers, G. J., & Creutzig, U. (2005). Pediatric acute myeloid leukemia: International progress and future directions. Leukemia, 19(12), 2025–2029.

    Article  CAS  PubMed  Google Scholar 

  6. Kaspers, G. J., & Zwaan, C. M. (2007). Pediatric acute myeloid leukemia: Towards high-quality cure of all patients. Haematologica, 92(11), 1519–1532.

    Article  PubMed  Google Scholar 

  7. Rubnitz, J. E., et al. (2010). Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: Results of the AML02 multicentre trial. The Lancet Oncology, 11(6), 543–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, J., et al. (2015). Germline mutations in predisposition genes in pediatric cancer. The New England Journal of Medicine, 373(24), 2336–2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, M., et al. (1999). Leukemia. In L. Ries et al. (Eds.), Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Program.

    Google Scholar 

  10. Linabery, A. M., & Ross, J. A. (2008). Trends in childhood cancer incidence in the U.S. (1992-2004). Cancer, 112(2), 416–432.

    Article  PubMed  Google Scholar 

  11. Roman, E., et al. (2013). Childhood acute lymphoblastic leukaemia and birthweight: Insights from a pooled analysis of case-control data from Germany, the United Kingdom and the United States. European Journal of Cancer, 49(6), 1437–1447.

    Article  PubMed  Google Scholar 

  12. Caughey, R. W., & Michels, K. B. (2009). Birth weight and childhood leukemia: A meta-analysis and review of the current evidence. International Journal of Cancer, 124(11), 2658–2670.

    Article  CAS  PubMed  Google Scholar 

  13. Greaves, M. (2018). A causal mechanism for childhood acute lymphoblastic leukaemia. Nature Reviews. Cancer, 18(8), 471–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kinlen, L. (1988). Evidence for an infective cause of childhood leukaemia: Comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet, 2(8624), 1323–1327.

    Article  CAS  PubMed  Google Scholar 

  15. Kinlen, L. J. (1995). Epidemiological evidence for an infective basis in childhood leukaemia. British Journal of Cancer, 71(1), 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greaves, M. (2018). Author Correction: A causal mechanism for childhood acute lymphoblastic leukaemia. Nature Reviews. Cancer, 18(8), 526.

    Article  CAS  PubMed  Google Scholar 

  17. Wiemels, J. L., et al. (1999). Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 354(9189), 1499–1503.

    Article  CAS  PubMed  Google Scholar 

  18. Greaves, M. F., et al. (2003). Leukemia in twins: Lessons in natural history. Blood, 102(7), 2321–2333.

    Article  CAS  PubMed  Google Scholar 

  19. Taub, J. W., Ge, Y., & Xavier, A. C. (2020). COVID-19 and childhood acute lymphoblastic leukemia. Pediatric Blood & Cancer, 67(7), e28400.

    Article  CAS  Google Scholar 

  20. Schmiegelow, K., et al. (2012). High concordance of subtypes of childhood acute lymphoblastic leukemia within families: Lessons from sibships with multiple cases of leukemia. Leukemia, 26(4), 675–681.

    Article  CAS  PubMed  Google Scholar 

  21. Draper, G. J., Heaf, M. M., & Kinnier Wilson, L. M. (1977). Occurrence of childhood cancers among sibs and estimation of familial risks. Journal of Medical Genetics, 14(2), 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, R. W. (1968). Deaths from childhood cancer in sibs. The New England Journal of Medicine, 279(3), 122–126.

    Article  CAS  PubMed  Google Scholar 

  23. Miller, R. W. (1971). Deaths from childhood leukemia and solid tumors among twins and other sibs in the United States, 1960-67. Journal of the National Cancer Institute, 46(1), 203–209.

    CAS  PubMed  Google Scholar 

  24. Friedman, D. L., et al. (2005). Increased risk of cancer among siblings of long-term childhood cancer survivors: A report from the childhood cancer survivor study. Cancer Epidemiology, Biomarkers & Prevention, 14(8), 1922–1927.

    Article  Google Scholar 

  25. Winther, J. F., et al. (2001). Cancer in siblings of children with cancer in the Nordic countries: A population-based cohort study. Lancet, 358(9283), 711–717.

    Article  CAS  PubMed  Google Scholar 

  26. Kharazmi, E., et al. (2012). Familial risks for childhood acute lymphocytic leukaemia in Sweden and Finland: Far exceeding the effects of known germline variants. British Journal of Haematology, 159(5), 585–588.

    PubMed  Google Scholar 

  27. Couto, A. C., et al. (2013). Familial history of cancer and leukemia in children younger than 2 years of age in Brazil. European Journal of Cancer Prevention, 22(2), 151–157.

    Article  PubMed  Google Scholar 

  28. Curtin, K., et al. (2013). Familial risk of childhood cancer and tumors in the Li-Fraumeni spectrum in the Utah population database: Implications for genetic evaluation in pediatric practice. International Journal of Cancer, 133(10), 2444–2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zierhut, H., et al. (2012). Family history of cancer and non-malignant diseases and risk of childhood acute lymphoblastic leukemia: A Children’s Oncology Group Study. Cancer Epidemiology, 36(1), 45–51.

    Article  PubMed  Google Scholar 

  30. Rudant, J., et al. (2007). Family history of cancer in children with acute leukemia, Hodgkin’s lymphoma or non-Hodgkin’s lymphoma: The ESCALE study (SFCE). International Journal of Cancer, 121(1), 119–126.

    Article  CAS  PubMed  Google Scholar 

  31. Fischer, S., et al. (2007). Screening for leukemia- and clone-specific markers at birth in children with T-cell precursor ALL suggests a predominantly postnatal origin. Blood, 110(8), 3036–3038.

    Article  CAS  PubMed  Google Scholar 

  32. Gruhn, B., et al. (2008). Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy. Leukemia, 22(9), 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  33. Hjalgrim, L. L., et al. (2002). Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. British Journal of Cancer, 87(9), 994–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maia, A. T., et al. (2004). Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes, Chromosomes & Cancer, 40(1), 38–43.

    Article  Google Scholar 

  35. Taub, J. W., et al. (2002). High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood, 99(8), 2992–2996.

    Article  CAS  PubMed  Google Scholar 

  36. Wiemels, J. L., et al. (1999). Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood, 94(3), 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  37. Ariga, H., et al. (2001). Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: Implications for noninvasive prenatal diagnosis. Transfusion, 41(12), 1524–1530.

    Article  CAS  PubMed  Google Scholar 

  38. Gammill, H. S., et al. (2010). Effect of parity on fetal and maternal microchimerism: Interaction of grafts within a host? Blood, 116(15), 2706–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Isoda, T., et al. (2009). Immunologically silent cancer clone transmission from mother to offspring. Proceedings of the National Academy of Sciences of the United States of America, 106(42), 17882–17885.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hussin, J., et al. (2013). Rare allelic forms of PRDM9 associated with childhood leukemogenesis. Genome Research, 23(3), 419–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Powell, B. C., et al. (2012). Identification of TP53 as an acute lymphocytic leukemia susceptibility gene through exome sequencing. Pediatric Blood & Cancer, 60(6), E1–E3.

    Article  CAS  Google Scholar 

  42. Holmfeldt, L., et al. (2013). The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nature Genetics, 45(3), 242–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pui, C. H., Nichols, K. E., & Yang, J. J. (2019). Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nature Reviews. Clinical Oncology, 16(4), 227–240.

    Article  CAS  PubMed  Google Scholar 

  44. Urayama, K. Y., et al. (2013). Current evidence for an inherited genetic basis of childhood acute lymphoblastic leukemia. International Journal of Hematology, 97(1), 3–19.

    Article  PubMed  Google Scholar 

  45. Chokkalingam, A. P., & Buffler, P. A. (2008). Genetic susceptibility to childhood leukaemia. Radiation Protection Dosimetry, 132(2), 119–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, H., et al. (2012). Methylenetetrahydrofolate reductase polymorphisms and risk of acute lymphoblastic leukemia-evidence from an updated meta-analysis including 35 studies. BMC Medical Genetics, 13, 77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yan, J., et al. (2012). A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. Pediatric Blood & Cancer, 58(4), 513–518.

    Article  Google Scholar 

  48. Goyal, R. K., & Cooper, J. D. (2012). Meta-analyzing the link between MTHFR C677T genotype and susceptibility to childhood ALL. Pediatric Blood & Cancer, 58(4), 483–484.

    Article  Google Scholar 

  49. Zintzaras, E., et al. (2012). Variants of the MTHFR gene and susceptibility to acute lymphoblastic leukemia in children: A synthesis of genetic association studies. Cancer Epidemiology, 36(2), 169–176.

    Article  CAS  PubMed  Google Scholar 

  50. Metayer, C., et al. (2011). Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes & Control, 22(9), 1243–1258.

    Article  Google Scholar 

  51. Azhar, M. R., et al. (2012). Lack of association between MTHFR C677T and A1298C polymorphisms and risk of childhood acute lymphoblastic leukemia in the Kurdish population from Western Iran. Genetic Testing and Molecular Biomarkers, 16(3), 198–202.

    Article  CAS  PubMed  Google Scholar 

  52. Nikbakht, M., et al. (2012). Polymorphisms of MTHFR and MTR genes are not related to susceptibility to childhood ALL in North India. Experimental Oncology, 34(1), 43–48.

    CAS  PubMed  Google Scholar 

  53. Lupo, P. J., et al. (2012). A case-parent triad assessment of folate metabolic genes and the risk of childhood acute lymphoblastic leukemia. Cancer Causes & Control, 23(11), 1797–1803.

    Article  Google Scholar 

  54. Amigou, A., et al. (2012). Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: The ESCALE study (SFCE). Cancer Causes & Control, 23(8), 1265–1277.

    Article  Google Scholar 

  55. Zhuo, W., et al. (2012). Does cytochrome P450 1A1 MspI polymorphism increase acute lymphoblastic leukemia risk? Evidence from 2013 cases and 2903 controls. Gene, 510(1), 14–21.

    Article  CAS  PubMed  Google Scholar 

  56. Vijayakrishnan, J., & Houlston, R. S. (2010). Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: A systematic review and meta-analysis. Haematologica, 95(8), 1405–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chokkalingam, A. P., et al. (2012). Variation in xenobiotic transport and metabolism genes, household chemical exposures, and risk of childhood acute lymphoblastic leukemia. Cancer Causes & Control, 23(8), 1367–1375.

    Article  Google Scholar 

  58. Chan, J. Y., et al. (2011). Xenobiotic and folate pathway gene polymorphisms and risk of childhood acute lymphoblastic leukaemia in Javanese children. Hematological Oncology, 29(3), 116–123.

    Article  CAS  PubMed  Google Scholar 

  59. Yeoh, A. E., et al. (2010). Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: Results from the Malaysia-Singapore ALL Study Group. Leukemia Research, 34(3), 276–283.

    Article  CAS  PubMed  Google Scholar 

  60. Rimando, M. G., et al. (2008). Prevalence of GSTT1, GSTM1 and NQO1 (609C>T) in Filipino children with ALL (acute lymphoblastic leukaemia). Bioscience Reports, 28(3), 117–124.

    Article  CAS  PubMed  Google Scholar 

  61. Suneetha, K. J., et al. (2008). Role of GSTM1 (Present/Null) and GSTP1 (Ile105Val) polymorphisms in susceptibility to acute lymphoblastic leukemia among the South Indian population. Asian Pacific Journal of Cancer Prevention, 9(4), 733–736.

    CAS  PubMed  Google Scholar 

  62. Krajinovic, M., et al. (2000). Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene-gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiology, Biomarkers & Prevention, 9(6), 557–562.

    CAS  Google Scholar 

  63. Zanrosso, C. W., et al. (2012). Genetic variability in N-acetyltransferase 2 gene determines susceptibility to childhood lymphoid or myeloid leukemia in Brazil. Leukemia & Lymphoma, 53(2), 323–327.

    Article  CAS  Google Scholar 

  64. Silveira, V. S., et al. (2012). CYP3A5 and NAT2 gene polymorphisms: Role in childhood acute lymphoblastic leukemia risk and treatment outcome. Molecular and Cellular Biochemistry, 364(1–2), 217–223.

    Article  CAS  PubMed  Google Scholar 

  65. Bonaventure, A., et al. (2012). Maternal smoking during pregnancy, genetic polymorphisms of metabolic enzymes, and childhood acute leukemia: The ESCALE study (SFCE). Cancer Causes & Control, 23(2), 329–345.

    Article  Google Scholar 

  66. Wang, L., et al. (2012). X-ray repair cross-complementing group 1 (XRCC1) genetic polymorphisms and risk of childhood acute lymphoblastic leukemia: A meta-analysis. PLoS One, 7(4), e34897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, R., et al. (2013). XRCC1 Arg399Gln and Arg194Trp polymorphisms in childhood acute lymphoblastic leukemia risk: A meta-analysis. Leukemia & Lymphoma, 54(1), 153–159.

    Article  CAS  Google Scholar 

  68. Dorak, M. T., et al. (2002). A male-specific increase in the HLA-DRB4 (DR53) frequency in high-risk and relapsed childhood ALL. Leukemia Research, 26(7), 651–656.

    Article  CAS  PubMed  Google Scholar 

  69. Dorak, M. T., et al. (1999). Unravelling an HLA-DR association in childhood acute lymphoblastic leukemia. Blood, 94(2), 694–700.

    Article  CAS  PubMed  Google Scholar 

  70. Taylor, M., et al. (2009). The human major histocompatibility complex and childhood leukemia: An etiological hypothesis based on molecular mimicry. Blood Cells, Molecules & Diseases, 42(2), 129–135.

    Article  CAS  Google Scholar 

  71. Ellinghaus, E., et al. (2012). Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia, 26(5), 902–909.

    Article  CAS  PubMed  Google Scholar 

  72. Orsi, L., et al. (2012). Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE). Leukemia, 26(12), 2561–2564.

    Article  CAS  PubMed  Google Scholar 

  73. Papaemmanuil, E., et al. (2009). Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nature Genetics, 41(9), 1006–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prasad, R. B., et al. (2010). Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood, 115(9), 1765–1767.

    Article  CAS  PubMed  Google Scholar 

  75. Sherborne, A. L., et al. (2010). Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nature Genetics, 42(6), 492–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trevino, L. R., et al. (2009). Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nature Genetics, 41(9), 1001–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Churchman, M. L., et al. (2018). Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell, 33(5), 937–948. e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fletcher, O., & Houlston, R. S. (2010). Architecture of inherited susceptibility to common cancer. Nature Reviews. Cancer, 10(5), 353–361.

    Article  CAS  PubMed  Google Scholar 

  79. Enciso-Mora, V., et al. (2012). Common genetic variation contributes significantly to the risk of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia, 26(10), 2212–2215.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, H., et al. (2013). Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. Journal of the National Cancer Institute, 105(10), 733–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Walsh, K. M., et al. (2013). Novel childhood ALL susceptibility locus BMI1-PIP4K2A is specifically associated with the hyperdiploid subtype. Blood, 121(23), 4808–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chokkalingam, A. P., et al. (2013). Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes & Control, 24(10), 1789–1795.

    Article  Google Scholar 

  83. Li, F. P., & Fraumeni, J. F., Jr. (1969). Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Annals of Internal Medicine, 71(4), 747–752.

    Article  CAS  PubMed  Google Scholar 

  84. Malkin, D., Li, F. P., Strong, L. C., Nelson, C. E., Kim, D. H., & Malkin, D. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 250(4985), 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  85. Lalloo, F., et al. (2003). Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet, 361(9363), 1101–1102.

    Article  CAS  PubMed  Google Scholar 

  86. Gonzalez, K. D., et al. (2009). Beyond Li Fraumeni Syndrome: Clinical characteristics of families with p53 germline mutations. Journal of Clinical Oncology, 27(8), 1250–1256.

    Article  CAS  PubMed  Google Scholar 

  87. de Andrade, K. C., et al. (2019). Variable population prevalence estimates of germline TP53 variants: A gnomAD-based analysis. Human Mutation, 40(1), 97–105.

    Article  PubMed  CAS  Google Scholar 

  88. Petitjean, A., et al. (2007). Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Human Mutation, 28(6), 622–629.

    Article  CAS  PubMed  Google Scholar 

  89. Ruijs, M. W., et al. (2010). TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: Mutation detection rate and relative frequency of cancers in different familial phenotypes. Journal of Medical Genetics, 47(6), 421–428.

    Article  CAS  PubMed  Google Scholar 

  90. Kleihues, P., et al. (1997). Tumors associated with p53 germline mutations: A synopsis of 91 families. The American Journal of Pathology, 150(1), 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. McBride, K. A., et al. (2014). Li-Fraumeni syndrome: Cancer risk assessment and clinical management. Nature Reviews Clinical oncology, 11(5), 260.

    Article  CAS  PubMed  Google Scholar 

  92. Qian, M., et al. (2018). TP53 germline variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukemia in children. Journal of Clinical Oncology, 36(6), 591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hof, J., et al. (2011). Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 29(23), 3185–3193.

    Article  PubMed  Google Scholar 

  94. Mai, P. L., et al. (2012). Li-Fraumeni syndrome: Report of a clinical research workshop and creation of a research consortium. Cancer Genetics, 205(10), 479–487.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Villani, A., et al. (2011). Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: A prospective observational study. The Lancet Oncology, 12(6), 559–567.

    Article  CAS  PubMed  Google Scholar 

  96. Kratz, C. P., et al. (2017). Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clinical Cancer Research, 23(11), e38–e45.

    Article  CAS  PubMed  Google Scholar 

  97. Porter, C. C., et al. (2017). Recommendations for surveillance for children with leukemia-predisposing conditions. Clinical Cancer Research, 23(11), e14–e22.

    Article  PubMed  Google Scholar 

  98. Kohlmann, W. and S.B. Gruber, Lynch Syndrome. 1993.

    Google Scholar 

  99. Wimmer, K., & Etzler, J. (2008). Constitutional mismatch repair-deficiency syndrome: Have we so far seen only the tip of an iceberg? Human Genetics, 124(2), 105–122.

    Article  PubMed  Google Scholar 

  100. Felton, K. E., Gilchrist, D. M., & Andrew, S. E. (2007). Constitutive deficiency in DNA mismatch repair. Clinical Genetics, 71(6), 483–498.

    Article  CAS  PubMed  Google Scholar 

  101. Scott, R. H., et al. (2007). Medulloblastoma, acute myelocytic leukemia and colonic carcinomas in a child with biallelic MSH6 mutations. Nature Clinical Practice. Oncology, 4(2), 130–134.

    Article  CAS  PubMed  Google Scholar 

  102. Ripperger, T., et al. (2010). Constitutional mismatch repair deficiency and childhood leukemia/lymphoma—Report on a novel biallelic MSH6 mutation. Haematologica, 95(5), 841–844.

    Article  CAS  PubMed  Google Scholar 

  103. Bandipalliam, P. (2005). Syndrome of early onset colon cancers, hematologic malignancies & features of neurofibromatosis in HNPCC families with homozygous mismatch repair gene mutations. Familial Cancer, 4(4), 323–333.

    Article  CAS  PubMed  Google Scholar 

  104. Shlien, A., et al. (2015). Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nature Genetics, 47(3), 257–262.

    Article  CAS  PubMed  Google Scholar 

  105. Wimmer, K., et al. (2016). Constitutional or biallelic? Settling on a name for a recessively inherited cancer susceptibility syndrome. Journal of Medical Genetics, 53(4), 226–226.

    Article  CAS  PubMed  Google Scholar 

  106. Chen, S., et al. (2006). Prediction of germline mutations and cancer risk in the Lynch syndrome. JAMA, 296(12), 1479–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rana, H. Q., & Syngal, S. (2017). Biallelic mismatch repair deficiency: Management and prevention of a devastating manifestation of the Lynch syndrome. Gastroenterology, 152(6), 1254–1257.

    Article  Google Scholar 

  108. Wimmer, K., et al. (2014). Diagnostic criteria for constitutional mismatch repair deficiency syndrome: Suggestions of the European consortium ‘care for CMMRD’(C4CMMRD). Journal of Medical Genetics, 51(6), 355–365.

    Article  CAS  PubMed  Google Scholar 

  109. Durno, C., et al. (2017). Recommendations on surveillance and management of biallelic mismatch repair deficiency (BMMRD) syndrome: A consensus statement by the US multi-society task force on colorectal cancer. Gastroenterology, 152(6), 1605–1614.

    Article  PubMed  Google Scholar 

  110. Ripperger, T., & Schlegelberger, B. (2016). Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. European Journal of Medical Genetics, 59(3), 133–142.

    Article  PubMed  Google Scholar 

  111. Vasen, H., et al. (2014). Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium “Care for CMMR-D” (C4CMMR-D). Journal of Medical Genetics, 51(5), 283–293.

    Article  CAS  PubMed  Google Scholar 

  112. Tabori, U., et al. (2017). Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clinical Cancer Research, 23(11), e32–e37.

    Article  PubMed  Google Scholar 

  113. Popp, H. D., & Bohlander, S. K. (2010). Genetic instability in inherited and sporadic leukemias. Genes, Chromosomes & Cancer, 49(12), 1071–1081.

    Article  CAS  Google Scholar 

  114. Sanz, M.M. and J. German, Bloom’s syndrome. 1993.

    Google Scholar 

  115. German, J., et al. (2007). Syndrome-causing mutations of the BLM gene in persons in the Bloom’s Syndrome Registry. Human Mutation, 28(8), 743–753.

    Article  CAS  PubMed  Google Scholar 

  116. Jones, K. L., & Smith, D. W. (2006). Smith’s recognizable patterns of human malformation (6th ed.). Elsevier Saunders. xviii, 954 p.

    Google Scholar 

  117. German, J., Crippa, L. P., & Bloom, D. (1974). Bloom’s syndrome. III. Analysis of the chromosome aberration characteristic of this disorder. Chromosoma, 48(4), 361–366.

    Article  CAS  PubMed  Google Scholar 

  118. Cunniff, C., Bassetti, J. A., & Ellis, N. A. (2017). Bloom’s syndrome: Clinical spectrum, molecular pathogenesis, and cancer predisposition. Molecular Syndromology, 8(1), 4–23.

    Article  CAS  PubMed  Google Scholar 

  119. Hudson, D. F., et al. (2016). Loss of RMI2 increases genome instability and causes a bloom-like syndrome. PLoS Genetics, 12(12).

    Google Scholar 

  120. Martin, C.-A., et al. (2018). Mutations in TOP3A cause a Bloom syndrome-like disorder. The American Journal of Human Genetics, 103(2), 221–231.

    Article  CAS  PubMed  Google Scholar 

  121. German, J. (1997). Bloom’s syndrome. XX. The first 100 cancers. Cancer Genetics and Cytogenetics, 93(1), 100–106.

    Article  CAS  PubMed  Google Scholar 

  122. Lauper, J. M., et al. (2013). Spectrum and risk of neoplasia in Werner syndrome: A systematic review. PLoS One, 8(4), e59709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Adams, M., et al. (2013). Acute myeloid leukaemia after treatment for acute lymphoblastic leukaemia in girl with Bloom syndrome. Journal of Genetic Syndromes & Gene Therapy, 4(8).

    Google Scholar 

  124. Cunniff, C., et al. (2018). Health supervision for people with Bloom syndrome. American Journal of Medical Genetics Part A, 176(9), 1872–1881.

    Article  PubMed  Google Scholar 

  125. Poppe, B., et al. (2001). Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genetics and Cytogenetics, 128(1), 39–42.

    Article  CAS  PubMed  Google Scholar 

  126. Aktas, D., et al. (2000). Myelodysplastic syndrome associated with monosomy 7 in a child with Bloom syndrome. Cancer Genetics and Cytogenetics, 116(1), 44–46.

    Article  CAS  PubMed  Google Scholar 

  127. Seif, A. E. (2011). Pediatric leukemia predisposition syndromes: Clues to understanding leukemogenesis. Cancer Genetics, 204(5), 227–244.

    Article  PubMed  Google Scholar 

  128. Goto, M., et al. (1996). Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiology, Biomarkers & Prevention, 5(4), 239–246.

    CAS  Google Scholar 

  129. Moser, M. J., et al. (2000). Genetic instability and hematologic disease risk in Werner syndrome patients and heterozygotes. Cancer Research, 60(9), 2492–2496.

    CAS  PubMed  Google Scholar 

  130. Takemoto, Y., et al. (1995). Leukemia developing after 131I treatment for thyroid cancer in a patient with Werner’s syndrome: Molecular and cytogenetic studies. Internal Medicine, 34(9), 863–867.

    Article  CAS  PubMed  Google Scholar 

  131. Simon, T., et al. (2010). Multiple malignant diseases in a patient with Rothmund-Thomson syndrome with RECQL4 mutations: Case report and literature review. American Journal of Medical Genetics. Part A, 152A(6), 1575–1579.

    CAS  PubMed  Google Scholar 

  132. Larizza, L., Roversi, G., & Verloes, A. (2013). Clinical utility gene card for: Rothmund–Thomson syndrome. European Journal of Human Genetics, 21(7), 792–792.

    Article  CAS  Google Scholar 

  133. Wang, L.L. and S.E. Plon, Rothmund-Thomson Syndrome. 1993.

    Google Scholar 

  134. Stinco, G., et al. (2008). Multiple cutaneous neoplasms in a patient with Rothmund-Thomson syndrome: Case report and published work review. The Journal of Dermatology, 35(3), 154–161.

    Article  PubMed  Google Scholar 

  135. Wang, L. L., et al. (2003). Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. Journal of the National Cancer Institute, 95(9), 669–674.

    Article  CAS  PubMed  Google Scholar 

  136. Porter, W. M., et al. (1999). Haematological disease in siblings with Rothmund-Thomson syndrome. Clinical and Experimental Dermatology, 24(6), 452–454.

    Article  CAS  PubMed  Google Scholar 

  137. Walsh, M. F., et al. (2017). Recommendations for childhood cancer screening and surveillance in DNA repair disorders. Clinical Cancer Research, 23(11), e23–e31.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shannon, K. M., et al. (1992). Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: Epidemiology and molecular analysis. Blood, 79(5), 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  139. Bader, J. L., & Miller, R. W. (1978). Neurofibromatosis and childhood leukemia. The Journal of Pediatrics, 92(6), 925–929.

    Article  CAS  PubMed  Google Scholar 

  140. Rasmussen, S. A., & Friedman, J. M. (2000). NF1 gene and neurofibromatosis 1. American Journal of Epidemiology, 151(1), 33–40.

    Article  CAS  PubMed  Google Scholar 

  141. Lammert, M., et al. (2005). Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Archives of Dermatology, 141(1), 71–74.

    Article  PubMed  Google Scholar 

  142. Stiller, C. A., Chessells, J. M., & Fitchett, M. (1994). Neurofibromatosis and childhood leukaemia/lymphoma: A population-based UKCCSG study. British Journal of Cancer, 70(5), 969–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Matsui, I., et al. (1993). Neurofibromatosis type 1 and childhood cancer. Cancer, 72(9), 2746–2754.

    Article  CAS  PubMed  Google Scholar 

  144. Seminog, O. O., & Goldacre, M. J. (2013). Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: Population-based record-linkage study. British Journal of Cancer, 108(1), 193–198.

    Article  CAS  PubMed  Google Scholar 

  145. Maris, J. M., et al. (1997). Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer, 79(7), 1438–1446.

    Article  CAS  PubMed  Google Scholar 

  146. Side, L. E., et al. (1998). Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood, 92(1), 267–272.

    Article  CAS  PubMed  Google Scholar 

  147. Niemeyer, C. M. (2018). JMML genomics and decisions. Hematology, The American Society of Hematology Education Program Book, 2018(1), 307–312.

    Article  PubMed  Google Scholar 

  148. Niemeyer, C., et al. (1997). Chronic myelomonocytic leukemia in childhood: A retrospective analysis of 110 cases. Blood, The Journal of the American Society of Hematology, 89(10), 3534–3543.

    CAS  Google Scholar 

  149. Miller, D. T., et al. (2019). Health supervision for children with neurofibromatosis type 1. Pediatrics, 143(5), e20190660.

    Article  PubMed  Google Scholar 

  150. Evans, D. G. R., et al. (2017). Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clinical Cancer Research, 23(12), e46–e53.

    Article  PubMed  Google Scholar 

  151. Kratz, C. P., et al. (2011). Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 157(2), 83–89.

    Article  PubMed Central  Google Scholar 

  152. Jongmans, M. C., et al. (2011). Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation. European Journal of Human Genetics, 19(8), 870–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Strullu, M., et al. (2014). Juvenile myelomonocytic leukaemia and Noonan syndrome. Journal of Medical Genetics, 51(10), 689–697.

    Article  CAS  PubMed  Google Scholar 

  154. Choong, K., et al. (1999). Juvenile myelomonocytic leukemia and Noonan syndrome. Journal of Pediatric Hematology/Oncology, 21(6), 523–527.

    Article  CAS  PubMed  Google Scholar 

  155. Kratz, C. P., et al. (2005). The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood, 106(6), 2183–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Villani, A., et al. (2017). Recommendations for cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased cancer risk. Clinical Cancer Research, 23(12), e83–e90.

    Article  CAS  PubMed  Google Scholar 

  157. Kratz, C., et al. (2015). Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. British Journal of Cancer, 112(8), 1392–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Niemeyer, C. M., et al. (2010). Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nature Genetics, 42(9), 794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Perez, B., et al. (2010). Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. Journal of Medical Genetics, 47(10), 686–691.

    Article  CAS  PubMed  Google Scholar 

  160. Loh, M. L., et al. (2009). Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood, 114(9), 1859–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Murakami, N., et al. (2018). Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood, 131(14), 1576–1586.

    Article  CAS  PubMed  Google Scholar 

  162. Lipka, D. B., et al. (2017). RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nature Communications, 8(1), 2126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Locatelli, F., & Niemeyer, C. M. (2015). How I treat juvenile myelomonocytic leukemia. Blood, The Journal of the American Society of Hematology, 125(7), 1083–1090.

    CAS  Google Scholar 

  164. Matsuda, K., et al. (2010). Long-term survival after nonintensive chemotherapy in some juvenile myelomonocytic leukemia patients with CBL mutations, and the possible presence of healthy persons with the mutations. Blood, The Journal of the American Society of Hematology, 115(26), 5429–5431.

    CAS  Google Scholar 

  165. Becker, H., et al. (2014). Tracing the development of acute myeloid leukemia in CBL syndrome. Blood, The Journal of the American Society of Hematology, 123(12), 1883–1886.

    CAS  Google Scholar 

  166. Alter, B.P. and G. Kupfer, Fanconi anemia. 1993.

    Google Scholar 

  167. Shimamura, A., & Alter, B. P. (2010). Pathophysiology and management of inherited bone marrow failure syndromes. Blood Reviews, 24(3), 101–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. D’Andrea, A. D. (2010). Susceptibility pathways in Fanconi’s anemia and breast cancer. New England Journal of Medicine, 362(20), 1909–1919.

    Article  PubMed  Google Scholar 

  169. Auerbach, A. D., Adler, B., & Chaganti, R. (1981). Prenatal and postnatal diagnosis and carrier detection of Fanconi anemia by a cytogenetic method. Pediatrics, 67(1), 128–135.

    Article  CAS  PubMed  Google Scholar 

  170. Nicoletti, E., et al. (2020). Mosaicism in Fanconi anemia: Concise review and evaluation of published cases with focus on clinical course of blood count normalization. Annals of Hematology, 99(5), 913–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Soulier, J. (2011). Fanconi anemia. Hematology. American Society of Hematology. Education Program, 2011, 492–497.

    Article  PubMed  Google Scholar 

  172. Young, N. S. (2018). Aplastic anemia. New England Journal of Medicine, 379(17), 1643–1656.

    Article  CAS  PubMed  Google Scholar 

  173. Alter, B. P. (2014). Fanconi anemia and the development of leukemia. Best Practice & Research Clinical Haematology, 27(3–4), 214–221.

    Article  CAS  Google Scholar 

  174. Hays, L., et al. (2014). Fanconi anemia: Guidelines for diagnosis and management. Oregon: fanconi.org, 431.

    Google Scholar 

  175. Alter, B. P., et al. (2010). Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. British Journal of Haematology, 150(2), 179–188.

    PubMed  PubMed Central  Google Scholar 

  176. Alter, B. P., et al. (2003). Cancer in Fanconi anemia. Blood, 101(5), 2072.

    Article  CAS  PubMed  Google Scholar 

  177. Network, N. C. C. (2020). NCCN clinical practice guidelines in oncology for genetic/familial high-risk assessment: Breast, ovarian, and pancreatic (Version 1.2020).

    Google Scholar 

  178. Rothblum-Oviatt, C., et al. (2016). Ataxia telangiectasia: A review. Orphanet Journal of Rare Diseases, 11(1), 159.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Taylor, A. M. R., et al. (2019). Chromosome instability syndromes. Nature Reviews Disease Primers, 5(1), 1–20.

    Article  Google Scholar 

  180. Gatti, R., Ataxia-Telangiectasia. 1993.

    Book  Google Scholar 

  181. Schoenaker, M., et al. (2016). Treatment of acute leukemia in children with ataxia telangiectasia (AT). European Journal of Medical Genetics, 59(12), 641–646.

    Article  CAS  PubMed  Google Scholar 

  182. Liberzon, E., et al. (2004). Germ-line ATM gene alterations are associated with susceptibility to sporadic T-cell acute lymphoblastic leukemia in children. Genes, Chromosomes & Cancer, 39(2), 161–166.

    Article  CAS  Google Scholar 

  183. Roohi, J., et al. (2017). New diagnosis of atypical ataxia-telangiectasia in a 17-year-old boy with T-cell acute lymphoblastic leukemia and a novel ATM mutation. Journal of Human Genetics, 62(5), 581–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Varon, R., et al. (2001). Mutations in the Nijmegen Breakage Syndrome gene (NBS1) in childhood acute lymphoblastic leukemia (ALL). Cancer Research, 61(9), 3570–3572.

    CAS  PubMed  Google Scholar 

  185. Kleier, S., et al. (2000). Clinical presentation and mutation identification in the NBS1 gene in a boy with Nijmegen breakage syndrome. Clinical Genetics, 57(5), 384–387.

    Article  CAS  PubMed  Google Scholar 

  186. Concannon, P. and R. Gatti, Nijmegen breakage syndrome. 1993.

    Google Scholar 

  187. (2000). Nijmegen breakage syndrome. The International Nijmegen Breakage Syndrome Study Group. Archives of Disease in Childhood, 82(5), 400–406.

    Google Scholar 

  188. Pastorczak, A., et al. (2016). Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. European Journal of Medical Genetics, 59(3), 126–132.

    Article  PubMed  Google Scholar 

  189. Pastorczak, A., et al. (2011). Nijmegen breakage syndrome (NBS) as a risk factor for CNS involvement in childhood acute lymphoblastic leukemia. Pediatric Blood & Cancer, 57(1), 160–162.

    Article  Google Scholar 

  190. Clinton, C. and H.T. Gazda, Diamond-Blackfan anemia. 1993.

    Google Scholar 

  191. Savage, S. A., & Dufour, C. (2017). Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. In Seminars in hematology. Elsevier.

    Google Scholar 

  192. Ball, S. (2011). Diamond Blackfan anemia. Hematology. American Society of Hematology. Education Program, 2011, 487–491.

    Article  PubMed  Google Scholar 

  193. Vlachos, A., et al. (2012). Incidence of neoplasia in Diamond Blackfan anemia: A report from the Diamond Blackfan Anemia Registry. Blood, 119(16), 3815–3819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Vlachos, A., et al. (2018). Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood, 132(20), 2205–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vlachos, A., et al. (2008). Diagnosing and treating Diamond Blackfan anaemia: Results of an international clinical consensus conference. British Journal of Haematology, 142(6), 859–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Austin, K. M., et al. (2008). Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. The Journal of Clinical Investigation, 118(4), 1511–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Myers, K. C., et al. (2014). Variable clinical presentation of Shwachman–Diamond syndrome: Update from the North American Shwachman–Diamond syndrome registry. The Journal of Pediatrics, 164(4), 866–870.

    Article  PubMed  Google Scholar 

  198. Myers, K. C., et al. (2019). Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: A multicentre, retrospective, cohort study. The Lancet Haematology, 7(3), e238–e246.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Dror, Y., & Freedman, M. H. (2002). Shwachman-diamond syndrome. British Journal of Haematology, 118(3), 701–713.

    Article  PubMed  Google Scholar 

  200. Cesaro, S., et al. (2020). A Prospective Study of Hematologic Complications and Long-Term Survival of Italian Patients Affected by Shwachman-Diamond Syndrome. The Journal of Pediatrics.

    Google Scholar 

  201. Dror, Y., et al. (2011). Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Annals of the New York Academy of Sciences, 1242(1), 40–55.

    Article  PubMed  Google Scholar 

  202. Geddis, A. E. (2011). Congenital amegakaryocytic thrombocytopenia. Pediatric Blood & Cancer, 57(2), 199–203.

    Article  Google Scholar 

  203. Ballmaier, M., & Germeshausen, M. (2011). Congenital amegakaryocytic thrombocytopenia: Clinical presentation, diagnosis, and treatment. Seminars in Thrombosis and Hemostasis, 37(6), 673–681.

    Article  CAS  PubMed  Google Scholar 

  204. Jalas, C., et al. (2011). A founder mutation in the MPL gene causes congenital amegakaryocytic thrombocytopenia (CAMT) in the Ashkenazi Jewish population. Blood Cells, Molecules & Diseases, 47(1), 79–83.

    Article  CAS  Google Scholar 

  205. Muraoka, K., et al. (1997). Defective response to thrombopoietin and impaired expression of c-mpl mRNA of bone marrow cells in congenital amegakaryocytic thrombocytopenia. British Journal of Haematology, 96(2), 287–292.

    Article  CAS  PubMed  Google Scholar 

  206. Khincha, P. P., & Savage, S. A. (2016). Neonatal manifestations of inherited bone marrow failure syndromes. In Seminars in fetal and neonatal medicine. Elsevier.

    Google Scholar 

  207. Toriello, H. V. Thrombocytopenia absent radius syndrome. GeneReviews™ [website] 2012 2012 June 28 [cited 2013 2013 July 22].

    Google Scholar 

  208. Fiedler, J., et al. (2012). Two patterns of thrombopoietin signaling suggest no coupling between platelet production and thrombopoietin reactivity in thrombocytopenia-absent radii syndrome. Haematologica, 97(1), 73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Albers, C. A., Paul, D. S., Schultz, H., Freson, K., Stephens, J. C., Smethurst, P. A., Jolley, J. D., Cvejic, A., Kostadima, M., Bertone, P., Breuning, M. H., Debili, N., Deloukas, P., Favier, R., Fiedler, J., Hobb, C. M., et al. (2012). Inheritance of low-frequency regulatory SNPS and a rare null mutation in exon-junction complex subunit RBM8A causes TAR. Nature Genetics, 44(4), 435–4S2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rao, V. S., Shenoi, U. D., & Krishnamurthy, P. N. (1997). Acute myeloid leukemia in TAR syndrome. Indian Journal of Pediatrics, 64, 563–565.

    Article  CAS  PubMed  Google Scholar 

  211. Fadoo, Z., & Naqvi, S. M. (2002). Acute myeloid leukemia in a patient with thrombocytopenia with absent radii syndrome. Journal of Pediatric Hematology/Oncology, 24(2), 134–135.

    Article  PubMed  Google Scholar 

  212. Camitta, B. M., & Rock, A. (1993). Acute lymphoidic leukemia in a patient with thrombocytopenia/absent radii (Tar) syndrome. The American Journal of Pediatric Hematology/Oncology, 15(3), 335–337.

    CAS  PubMed  Google Scholar 

  213. Go, R. S., & Johnston, K. L. (2003). Acute myelogenous leukemia in an adult with thrombocytopenia with absent radii syndrome. European Journal of Haematology, 70(4), 246–248.

    Article  PubMed  Google Scholar 

  214. Jameson-Lee, M., et al. (2018). Acute myeloid leukemia in a patient with thrombocytopenia with absent radii: A case report and review of the literature. Hematology/Oncology and Stem Cell Therapy, 11(4), 245–247.

    Article  CAS  PubMed  Google Scholar 

  215. Brochstein, J. A., et al. (1992). Marrow transplantation for thrombocytopenia—absent radii syndrome. The Journal of Pediatrics, 121(4), 587–589.

    Article  CAS  PubMed  Google Scholar 

  216. Toriello, H.V., Thrombocytopenia absent radius syndrome. 1993.

    Google Scholar 

  217. Boztug, K., & Klein, C. (2009). Novel genetic etiologies of severe congenital neutropenia. Current Opinion in Immunology, 21, 472–480.

    Article  CAS  PubMed  Google Scholar 

  218. Donadieu, J., Fenneteau, O., Beaupain, B., Mahlaoui, N., & Bellanee Chantelot, C. (2011). Congenital neutropenia diagnosis, molecular bases and patient management. Orphanet Journal of Rare Diseases, 6(26).

    Google Scholar 

  219. Skokowa, J., et al. (2017). Severe congenital neutropenias. Nature Reviews Disease Primers, 3(1), 1–18.

    Article  Google Scholar 

  220. Donadieu, J., et al. (2017). Congenital neutropenia in the era of genomics: Classification, diagnosis, and natural history. British Journal of Haematology, 179(4), 557–574.

    Article  PubMed  Google Scholar 

  221. Freedman, M. H., Bonilla, M. A., Fier, C., Bolyard, A. A., Scarlata, D., Boxer, L. A., Brown, S., Cham, B., Kannourakis, G., Kinsey, S. E., Mori, P., Cottle, T., Welte, K., & Dale, D. C. (2000). Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood, 96, 429–436.

    CAS  PubMed  Google Scholar 

  222. Rosenberg, P. S., Alter, B. P., Bolyard, A. A., Bonilla, M. A., Boxer, L. A., Cham, B., Fier, C., Freedman, M., Kannourakis, S., Kinsey, S., et al. (2006). The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood, 107, 4628–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Rosenberg, P. S., Alter, B. P., Bolyard, A. A., Link, S., Stein, E., Rodger, A. A., Bolyard, A. A., Aprikyan, M. A., Bonilla, M. A., Dror, G., Kannourakis, S., et al. (2008). Neutrophil elastase mutations and risk of leukemia in severe congenital neutropenia. British Journal of Haematology, 140, 210–213.

    CAS  PubMed  Google Scholar 

  224. Rosenberg, P. S., et al. (2010). Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. British Journal of Haematology, 150(2), 196–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Donadieu, J., et al. (2005). Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica, 90(1), 45–53.

    PubMed  Google Scholar 

  226. Kimmel, M., & Corey, S. (2013). Stochastic hypothesis of transition from inborn neutropenia to AML: Interactions of cell population dynamics and population genetics. Frontiers in Oncology, 3(89).

    Google Scholar 

  227. Walkovich, K., & Connelly, J. A. (2019). Congenital neutropenia and rare functional phagocyte disorders in children. Hematology/Oncology Clinics, 33(3), 533–551.

    Article  Google Scholar 

  228. Fioredda, F., et al. (2015). Stem cell transplantation in severe congenital neutropenia: An analysis from the European Society for Blood and Marrow Transplantation. Blood, The Journal of the American Society of Hematology, 126(16), 1885–1892.

    CAS  Google Scholar 

  229. Dale, D. C. (1993). ELANE-Related Neutropenia. In R. A. Pagon et al. (Eds.), GeneReviews.

    Google Scholar 

  230. Alter, B. P., et al. (2007). Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood, 110(5), 1439–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Niewisch, M. R., & Savage, S. A. (2019). An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Review of Hematology, 12(12), 1037–1052.

    Article  CAS  PubMed  Google Scholar 

  232. Savage, S.A., Dyskeratosis Congenita. 1993.

    Google Scholar 

  233. Savage, S. A. (1993–2020). Dyskeratosis Congenita. 2009 Nov 12 [Updated 2019 Nov 21]. In M. P. Adam, H. Ardinger, R. A. Pagon, et al. (Eds.), GeneReviews® [Internet]. University of Washington, Seattle. WA. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK22301/

  234. Vulliamy, T., et al. (2004). Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nature Genetics, 36(5), 447–449.

    Article  CAS  PubMed  Google Scholar 

  235. Alter, B. P., et al. (2012). Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica, 97(3), 353–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Alter, B. P., et al. (2007). Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood, The Journal of the American Society of Hematology, 110(5), 1439–1447.

    CAS  Google Scholar 

  237. Alter, B. P., et al. (2009). Cancer in dyskeratosis congenita. Blood, 113(26), 6549–6557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Alter, B. P., et al. (2018). Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica, 103(1), 30–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Dietz, A. C., et al. (2017). Late effects screening guidelines after hematopoietic cell transplantation for inherited bone marrow failure syndromes: Consensus statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects After Pediatric HCT. Biology of Blood and Marrow Transplantation, 23(9), 1422–1428.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Savage, S., & Cook, E. (2015). Dyskeratosis congenita and telomere biology disorders: Diagnosis and management guidelines. Dyskeratosis Congenita Outreach Inc.

    Google Scholar 

  241. Candotti, F. (2018). Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. Journal of Clinical Immunology, 38(1), 13–27.

    Article  CAS  PubMed  Google Scholar 

  242. Massaad, M. J., Narayanaswamy, R., & Geha, R. S. (2013). Wiskott-Aldrich syndrome: A comprehensive review. Annals. New York Academy of Sciences, 1285, 26–43.

    Article  CAS  Google Scholar 

  243. Rivers, E., et al. (2019). How I manage patients with Wiskott Aldrich syndrome. British Journal of Haematology, 185(4), 647–655.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Filipovich, A. H., Johnson, J., & Zhang, K. (1993). WAS-related disorders. In R. A. Pagon et al. (Eds.), GeneReviews.

    Google Scholar 

  245. Thrasher, A. J., & Burns, S. O. (2010). WASP: A key immunological multitasker. Nature Reviews Immunology, 10(3), 182–192.

    Article  CAS  PubMed  Google Scholar 

  246. Perry, G. S., 3rd, et al. (1980). The Wiskott-Aldrich syndrome in the United States and Canada (1892-1979). The Journal of Pediatrics, 97(1), 72–78.

    Article  PubMed  Google Scholar 

  247. Moratto, D., Giliani, S., Bonfim, C., Mazzolari, E., Fischer, A., Ochs, H. D., Cant, A. J., Thrasher, A. J., Cowan, M. J., Albert, M. H., et al. (2011). Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: An international collaborative study. Blood, 118, 1675–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Stieglitz, E., et al. (2015). The genomic landscape of juvenile myelomonocytic leukemia. Nature Genetics, 47(11), 1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Yoshimi, A., et al. (2013). Wiskott–Aldrich syndrome presenting with a clinical picture mimicking juvenile myelomonocytic leukaemia. Pediatric Blood & Cancer, 60(5), 836–841.

    Article  CAS  Google Scholar 

  250. Meropol, N. J., et al. (1992). Coincident Kaposi sarcoma and T-cell lymphoma in a patient with the Wiskott-Aldrich syndrome. American Journal of Hematology, 40(2), 126–134.

    Article  CAS  PubMed  Google Scholar 

  251. Beel, K., & Vandenberghe, P. (2009). G-CSF receptor (CSF3R) mutations in X-linked neutropenia evolving to acute myeloid leukemia or myelodysplasia. Haematologica, 94(10), 1449–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Boztug, K., & Klein, C. (2011). Genetic etiologies of severe congenital neutropenia. Current Opinion in Pediatrics, 23(1), 21–26.

    Article  CAS  PubMed  Google Scholar 

  253. Burroughs, L., et al. (2020). Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: A PIDTC report. Blood Journal, 135(23), 2094–2105.

    Article  Google Scholar 

  254. Conley, M.E. and V.C. Howard, X-Linked Agammaglobulinemia. 1993.

    Google Scholar 

  255. Lee, P. P. W., Chen, T.-X., Jiang, L.-P., Chan, K.-W., Yang, W., Lee, B.-W., Chiang, W.-C., et al. (2010). Clinical characteristics and genotype-phenotype correlation in 62 patients with x-linked agammaglobulinemia. Journal of Clinical Immunology, 30, 121–131.

    Article  CAS  PubMed  Google Scholar 

  256. Hajjar, J., et al. (2016). Gastric adenocarcinoma in a patient with X-linked Agammaglobulinemia and HIV: Case report and review of the literature. Frontiers in Pediatrics, 4, 100.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Lougaris, V., et al. (2020). Long term follow-up of 168 patients with X-linked agammaglobulinemia reveals increased morbidity and mortality. Journal of Allergy and Clinical Immunology, 146(2), 429–437.

    Article  CAS  PubMed  Google Scholar 

  258. Winkelstein, J. A., Marino, M. C., Lederman, H. M., Jones, S. M., Sullivan, K., Burks, A. W., Conley, M. E., Cunningham-Rundles, C., & Ochs, H. D. (2006). X-linked agammaglobulinemia: Report on a United States registry of 201 patients. Medicine (Baltimore), 85(4), 193–202.

    Article  Google Scholar 

  259. Klein, R.D. and G. Marcucci, Familial Acute Myeloid Leukemia (AML) with mutated CEBPA. 1993.

    Google Scholar 

  260. Smith, M. L., et al. (2004). Mutation of CEBPA in familial acute myeloid leukemia. The New England Journal of Medicine, 351(23), 2403–2407.

    Article  CAS  PubMed  Google Scholar 

  261. Stelljes, M., et al. (2011). Allogeneic stem cell transplant to eliminate germline mutations in the gene for CCAAT-enhancer-binding protein alpha from hematopoietic cells in a family with AML. Leukemia, 25(7), 1209–1210.

    Article  CAS  PubMed  Google Scholar 

  262. Tawana, K., et al. (2015). Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood, The Journal of the American Society of Hematology, 126(10), 1214–1223.

    CAS  Google Scholar 

  263. DiNardo, C. (2015). Getting a handle on hereditary CEBPA mutations. Blood, 126(10), 1156–1158.

    Article  CAS  PubMed  Google Scholar 

  264. Tawana, K., et al. (2017). Familial CEBPA-mutated acute myeloid leukemia. In Seminars in hematology. Elsevier.

    Google Scholar 

  265. Pabst, T., et al. (2008). Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. Journal of Clinical Oncology, 26(31), 5088–5093.

    Article  CAS  PubMed  Google Scholar 

  266. Taskesen, E., et al. (2011). Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: Further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood, 117(8), 2469–2475.

    Article  CAS  PubMed  Google Scholar 

  267. Debeljak, M., et al. (2013). Concordant acute myeloblastic leukemia in monozygotic twins with germline and shared somatic mutations in the gene for CCAAT-enhancer-binding protein α with 13 years difference at onset. Haematologica, 98(7), e73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Stelljes, M., et al. (2011). Allogeneic stem cell transplant to eliminate germline mutations in the gene for CCAAT-enhancer-binding protein α from hematopoietic cells in a family with AML. Leukemia, 25(7), 1209–1210.

    Article  CAS  PubMed  Google Scholar 

  269. Godley, L. A., & Shimamura, A. (2017). Genetic predisposition to hematologic malignancies: Management and surveillance. Blood, The Journal of the American Society of Hematology, 130(4), 424–432.

    CAS  Google Scholar 

  270. Team, U.o.C.H.M.C.R. (2016). How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood, The Journal of the American Society of Hematology, 128(14), 1800–1813.

    Google Scholar 

  271. Ganly, P., Walker, L. C., & Morris, C. M. (2004). Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia. Leukemia & Lymphoma, 45(1), 1–10.

    Article  CAS  Google Scholar 

  272. Mangan, J. K., & Speck, N. A. (2011). RUNX1 mutations in clonal myeloid disorders: From conventional cytogenetics to next generation sequencing, a story 40 years in the making. Critical Reviews in Oncogenesis, 16(1–2), 77–91.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Luo, X., et al. (2019). ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Advances, 3(20), 2962–2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Simon, L., et al. (2020). High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. Blood, The Journal of the American Society of Hematology, 135(21), 1882–1886.

    CAS  Google Scholar 

  275. Godley, L. A. Inherited predisposition to acute myeloid leukemia. in Seminars in hematology. 2014. Elsevier.

    Google Scholar 

  276. Kennedy, A. L., & Shimamura, A. (2019). Genetic predisposition to MDS: Clinical features and clonal evolution. Blood, The Journal of the American Society of Hematology, 133(10), 1071–1085.

    CAS  Google Scholar 

  277. Bannon, S. A., & DiNardo, C. D. (2016). Hereditary predispositions to myelodysplastic syndrome. International Journal of Molecular Sciences, 17(6), 838.

    Article  PubMed Central  CAS  Google Scholar 

  278. Li, Y., et al. (2019). Germline RUNX1 variation and predisposition to T-cell acute lymphoblastic leukemia in children. American Society of Hematology.

    Book  Google Scholar 

  279. Owen, C. J., et al. (2008). Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood, 112(12), 4639–4645.

    Article  CAS  PubMed  Google Scholar 

  280. Kazenwadel, J., et al. (2012). Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood, 119(5), 1283–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Hirabayashi, S., et al. (2017). Heterogeneity of GATA2-related myeloid neoplasms. International Journal of Hematology, 106(2), 175–182.

    Article  CAS  PubMed  Google Scholar 

  282. Wlodarski, M. W., Collin, M., & Horwitz, M. S. (2017). GATA2 deficiency and related myeloid neoplasms. In Seminars in hematology. Elsevier.

    Google Scholar 

  283. Hsu, A. P., et al. (2011). Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood, 118(10), 2653–2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Ostergaard, P., et al. (2011). Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nature Genetics, 43(10), 929.

    Article  CAS  PubMed  Google Scholar 

  285. Wlodarski, M. W., et al. (2016). Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood, The Journal of the American Society of Hematology, 127(11), 1387–1397.

    CAS  Google Scholar 

  286. Hirabayashi, S., et al. Unexpected high frequency of GATA2 mutations in children with non-familial MDS and monosomy 7. 2012. American Society of Hematology.

    Google Scholar 

  287. Schwartz, J. R., et al. (2017). The genomic landscape of pediatric myelodysplastic syndromes. Nature Communications, 8(1), 1–10.

    Article  CAS  Google Scholar 

  288. Chen, D.-H., et al. (2016). Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. The American Journal of Human Genetics, 98(6), 1146–1158.

    Article  CAS  PubMed  Google Scholar 

  289. Narumi, S., et al. (2016). SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nature Genetics, 48(7), 792.

    Article  CAS  PubMed  Google Scholar 

  290. Tesi, B., et al. (2017). Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood, The Journal of the American Society of Hematology, 129(16), 2266–2279.

    CAS  Google Scholar 

  291. Bluteau, O., et al. (2018). A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood, The Journal of the American Society of Hematology, 131(7), 717–732.

    CAS  Google Scholar 

  292. Pastor, V. B., et al. (2018). Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica, 103(3), 427–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Ahmed, I. A., et al. (2019). Outcomes of hematopoietic cell transplantation in patients with germline SAMD9/SAMD9L mutations. Biology of Blood and Marrow Transplantation, 25(11), 2186–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Davidsson, J., et al. (2018). SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies. Leukemia, 32(5), 1106–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Zhang, M. Y., et al. (2015). Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nature Genetics, 47(2), 180–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Noetzli, L., et al. (2015). Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nature Genetics, 47(5), 535–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Hock, H., & Shimamura, A. (2017). ETV6 in hematopoiesis and leukemia predisposition. In Seminars in hematology. Elsevier.

    Google Scholar 

  298. Wiggins, M., & Stevenson, W. (2020). Genetic predisposition in acute leukaemia. International Journal of Laboratory Hematology, 42(Suppl 1), 75–81.

    Article  PubMed  Google Scholar 

  299. Di Paola, J., & Porter, C. C. (2019). ETV6-related thrombocytopenia and leukemia predisposition. Blood, 134(8), 663–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Moriyama, T., et al. (2015). Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: A systematic genetic study. The Lancet Oncology, 16(16), 1659–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Plon, S. E., & Lupo, P. J. (2019). Genetic predisposition to childhood cancer in the genomic era. Annual Review of Genomics and Human Genetics, 20, 241–263.

    Article  CAS  PubMed  Google Scholar 

  302. Shah, S., et al. (2013). A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nature Genetics, 45(10), 1226–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Perez-Garcia, A., et al. (2013). Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood, 122(14), 2425–2432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Willman, C. L. (2013). SH2B3: A new leukemia predisposition gene. Blood, 122(14), 2293–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Mori, T., et al. (2014). Lnk/Sh2b3 controls the production and function of dendritic cells and regulates the induction of IFN-gamma-producing T cells. Journal of Immunology, 193(4), 1728–1736.

    Article  CAS  Google Scholar 

  306. Auburger, G., et al. (2014). 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? World Journal of Diabetes, 5(3), 316–327.

    Article  PubMed  PubMed Central  Google Scholar 

  307. Zhernakova, A., et al. (2010). Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. American Journal of Human Genetics, 86(6), 970–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Georgopoulos, K. (2017). The making of a lymphocyte: The choice among disparate cell fates and the IKAROS enigma. Genes & Development, 31(5), 439–450.

    Article  CAS  Google Scholar 

  309. Gocho, Y., & Yang, J. J. (2019). Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia. Blood, 134(10), 793–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Bull, M. J. (2011). Health supervision for children with Down syndrome. Pediatrics, 128(2), 393–406.

    Article  PubMed  Google Scholar 

  311. Seewald, L., et al. (2012). Acute leukemias in children with Down syndrome. Molecular Genetics and Metabolism, 107(1–2), 25–30.

    Article  CAS  PubMed  Google Scholar 

  312. Gamis, A. S., & Smith, F. O. (2012). Transient myeloproliferative disorder in children with Down syndrome: Clarity to this enigmatic disorder. British Journal of Haematology, 159(3), 277–287.

    Article  PubMed  Google Scholar 

  313. Massey, G. V., et al. (2006). A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG-9481. Blood, 107(12), 4606–4613.

    Article  CAS  PubMed  Google Scholar 

  314. Klusmann, J. H., et al. (2008). Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood, 111(6), 2991–2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Englund, A., et al. (2013). Changes in mortality and causes of death in the Swedish Down syndrome population. American Journal of Medical Genetics. Part A, 161(4), 642–649.

    Article  Google Scholar 

  316. Xavier, A. C., Ge, Y., & Taub, J. W. (2009). Down syndrome and malignancies: A unique clinical relationship: A paper from the 2008 william beaumont hospital symposium on molecular pathology. The Journal of Molecular Diagnostics, 11(5), 371–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Taub, J. W. (2001). Relationship of chromosome 21 and acute leukemia in children with Down syndrome. Journal of Pediatric Hematology/Oncology, 23(3), 175–178.

    Article  CAS  PubMed  Google Scholar 

  318. Meyr, F., et al. (2013). Outcomes of treatment for relapsed acute lymphoblastic leukaemia in children with Down syndrome. British Journal of Haematology, 162(1), 98–106.

    Article  PubMed  Google Scholar 

  319. Carozza, S. E., et al. (2012). Are children with birth defects at higher risk of childhood cancers? American Journal of Epidemiology, 175(12), 1217–1224.

    Article  PubMed  Google Scholar 

  320. Fisher, P. G., et al. (2012). Cancer in children with nonchromosomal birth defects. The Journal of Pediatrics, 160(6), 978–983.

    Article  PubMed  PubMed Central  Google Scholar 

  321. Bjorge, T., et al. (2008). Cancer risk in children with birth defects and in their families: A population based cohort study of 5.2 million children from Norway and Sweden. Cancer Epidemiology, Biomarkers & Prevention, 17(3), 500–506.

    Article  Google Scholar 

  322. Mann, J. R., et al. (1993). Congenital abnormalities in children with cancer and their relatives: Results from a case-control study (IRESCC). British Journal of Cancer, 68(2), 357–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Jonas, D. M., Heilbron, D. C., & Ablin, A. R. (1978). Rubinstein-Taybi syndrome and acute leukemia. The Journal of Pediatrics, 92(5), 851–852.

    Article  CAS  PubMed  Google Scholar 

  324. Miller, R. W. (1969). Childhood cancer and congenital defects. A study of U.S. death certificates during the period 1960-1966. Pediatric Research, 3(5), 389–397.

    Article  CAS  PubMed  Google Scholar 

  325. Li, F., & Bader, J. (1987). Epidemiology of cancer in childhood. In D. Nathan & F. Oski (Eds.), Hematology of infancy and childhood. W.B. Saunders.

    Google Scholar 

  326. Taylor, G., & Birch, J. (1966). The hereditary basis of human leukemia. In T. Henderson, T. Lister, & M. Greaves (Eds.), Leukemia (6th ed.). W.B. Saunders.

    Google Scholar 

  327. Guidugli, L., et al. (2017). Clinical utility of gene panel-based testing for hereditary myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia, 31(5), 1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Bloom, M., et al. (2020). Recent advances in genetic predisposition to pediatric acute lymphoblastic leukemia. Expert Review of Hematology, 13(1), 55–70.

    Article  CAS  PubMed  Google Scholar 

  329. Kohlmann, W., & Schiffman, J. D. (2016). Discussing and managing hematologic germ line variants. Blood, 128(21), 2497–2503.

    Article  CAS  PubMed  Google Scholar 

  330. Rosenberg, P. S., Tamary, H., & Alter, B. P. (2011). How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. American Journal of Medical Genetics Part A, 155(8), 1877–1883.

    Article  PubMed Central  Google Scholar 

  331. Maurer, M. H., et al. (2010). High prevalence of the NBN gene mutation c.657-661del5 in Southeast Germany. Journal of Applied Genetics, 51(2), 211–214.

    Article  CAS  PubMed  Google Scholar 

  332. Goobie, S., et al. (2001). Shwachman-Diamond syndrome with exocrine pancreatic dysfunction and bone marrow failure maps to the centromeric region of chromosome 7. American Journal of Human Genetics, 68(4), 1048–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Jalas, C., Anderson, S. L., Laufer, T., Martimucci, K., Bulanov, A., Xie, X., Ekstein, J., & Rubin, B. Y. (2011). A founder mutation in the MLP gene causes congenital amegakaryocytic thrombocytopenia (CAMT) in the Ashkenazi Jewish population. Blood Cells, Molecules, and Diseases, 47, 79–83.

    Article  CAS  PubMed  Google Scholar 

  334. Oshima, J., Martin, G. M., & Hisama, F. M. (1993). Werner syndrome. In R. A. Pagon et al. (Eds.), GeneReviews.

    Google Scholar 

  335. Camargo, J. F., et al. (2013). MonoMAC syndrome in a patient with a GATA2 mutation: Case report and review of the literature. Clinical Infectious Diseases, 57(5), 697–699.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of the Genetic Counseling Shared Resource supported by P30 CA042014 awarded to Huntsman Cancer Institute. We also acknowledge the careful review and suggestions of Mel F. Greaves, PhD, in the Haemato-Oncology Research Unit in the Division of Molecular Pathology at The Institute of Cancer Research in the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Schiffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s) under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vagher, J., Maese, L., Gammon, A., Kohlmann, W., Schiffman, J.D. (2021). Inherited Risk for Childhood Leukemia. In: Malkin, D. (eds) The Hereditary Basis of Childhood Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-74448-9_11

Download citation

Publish with us

Policies and ethics