Skip to main content

The Fundamental Theorems

  • Chapter
  • First Online:
Continuous-Time Asset Pricing Theory

Part of the book series: Springer Finance ((SFTEXT))

  • 1281 Accesses

Abstract

This chapter presents the three fundamental theorems of asset pricing. These theorems are the basis for pricing and hedging derivatives, characterizing price bubbles, and understanding the risk return relations among assets including the notion of systematic risk, idiosyncratic risk, portfolio optimization, and equilibrium pricing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ash, Real Analysis and Probability (Academic, New York, 1972)

    Google Scholar 

  2. P. Bank, D. Baum, Hedging and portfolio optimization in financial markets with a large trader. Math. Financ. 14(1), 1–18 (2004)

    Article  Google Scholar 

  3. R. Battig, R. Jarrow, The second fundamental theorem of asset pricing: a new approach. Rev. Financ. Stud. 12(5), 1219–1235 (1999)

    Article  Google Scholar 

  4. U. Cetin, R. Jarrow, P. Protter, Liquidity risk and arbitrage pricing theory. Financ. Stoch. 8(3), 311–341 (2004)

    Article  Google Scholar 

  5. R. Cont, P. Tankov, Financial Modelling with Jump Processes. Financial Mathematics Series (Chapman & Hall/CRC, New York, 2004)

    Google Scholar 

  6. F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing. Math. Ann. 312, 215–250 (1994)

    Article  Google Scholar 

  7. F. Delbaen, W. Schachermayer, The banach space of workable contingent claims in arbitrage theory. Annales de l’IHP 33(1), 114–144 (1997)

    Google Scholar 

  8. F. Delbaen, W. Schachermayer, The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 300, 463–520 (1998)

    Article  Google Scholar 

  9. F. Delbaen, W. Schachermayer, The Mathematics of Arbitrage (Springer, Berlin, 2000)

    Google Scholar 

  10. G. Di Nunno, B. Oksendal, F. Proske, Malliavin Calculus for Levy Processes with Applications in Finance (Springer, Berlin, 2009)

    Book  Google Scholar 

  11. L. Eisenberg, R. Jarrow, Option pricing with random volatilities in complete markets. Rev. Quant. Financ. Account. 4, 5–17 (1994)

    Article  Google Scholar 

  12. J.M. Harrison, S. Pliska, A stochastic calculus model of continuous trading: complete markets. Stoch. Process. Appl. 15, 313–316 (1983)

    Article  Google Scholar 

  13. H. He, N. Pearson, Consumption and portfolio policies with incomplete markets and short sale constraints: the infinite dimensional case. J. Econ. Theory 54, 259–304 (1991)

    Article  Google Scholar 

  14. J. Jacod, P. Protter, Probability Essentials (Springer, New York, 2000)

    Book  Google Scholar 

  15. R. Jarrow, Market manipulation, bubbles, corners, and short squeezes. J. Financ. Quant. Anal. 27(3), 311–336 (1992)

    Article  Google Scholar 

  16. R. Jarrow, Derivative security markets, market manipulation, and option pricing theory. J. Financ. Quant. Anal. 29(2), 241–261 (1994)

    Article  Google Scholar 

  17. R. Jarrow, Asset market equilibrium with liquidity risk. Ann. Financ. 14, 253–288 (2018)

    Article  Google Scholar 

  18. R. Jarrow, M. Larsson, The meaning of market efficiency. Math. Financ. 22(1), 1–30 (2012)

    Article  Google Scholar 

  19. Y. Kabanov, C. Kardaras, No arbitrage of the first kind and local martingale numeraires. Financ. Stoch. 20, 1097–1108 (2016)

    Article  Google Scholar 

  20. I. Karatzas, C. Kardaras, The numeraire portfolio in semimartingale financial models. Financ. Stoch. 11, 447–493 (2007)

    Article  Google Scholar 

  21. I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus (Springer, Berlin, 1988)

    Book  Google Scholar 

  22. I. Karatzas, S. Shreve, Methods of Mathematical Finance (Springer, Berlin, 1999)

    Google Scholar 

  23. C. Kardaras, Market viability via absence of arbitrage of the first kind. Financ. Stoch. 16, 651–667 (2012)

    Article  Google Scholar 

  24. P. Medvegyev, Stochastic Integration Theory (Oxford University Press, New York, 2009)

    Google Scholar 

  25. R.C. Merton, Theory of rational option pricing. Bell J. Econ. 4(1), 141–183 (1973)

    Article  Google Scholar 

  26. S. Perlis, Theory of Matrices, 3rd printing (Addison-Wesley, Boston, 1958)

    Google Scholar 

  27. P. Protter, Stochastic integration and differential equations, 2nd edn., ver. 2.1 (Springer, Berlin, 2005)

    Google Scholar 

  28. K. Takaoka, M. Schweizer, A note on the condition of no unbounded profit with bounded risk. Financ. Stoch. 18, 393–405 (2014)

    Article  Google Scholar 

  29. H. Theil, Principles of Econometrics (Wiley, New York, 1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

This appendix proves that the original definition of NFLVR in Delbaen and Schachermayer [44, Proposition 3.6], is equivalent to Definition 27 of NFLVR given in the text. And, it uses Theorem 12 to give another characterization of NUPBR.

Definition 32 (No Free Lunch with Vanishing Risk (D&S))

A free lunch with vanishing risk (D&S) is: (i) a simple arbitrage opportunity (NA) , or (ii) a sequence of zero initial investment admissible s.f.t.s.’s \((\alpha _{0},\alpha )_{n}\in \mathcal {A}(0)\) with value processes \(X_{t}^{n}\), lower admissibility bounds c n ≤ 0, and a \(\mathcal {F}_{T}\)-measurable random variable χ ≥ 0 with \(\mathbb {P}(\chi >0)>0\) such that c n → 0 and \(X_{T}^{n}\rightarrow \chi \) in probability. We denote condition (ii) as D&S(ii).

The market satisfies D&S if there exist no D&S trading strategies.

As seen, a market satisfies D&S if there are no simple arbitrage opportunities and no approximate arbitrage opportunities \((\alpha _{0},\alpha )_{n}\in \mathcal {A}(0)\), that in the limit, become simple arbitrage opportunities. Both conditions (i) and (ii) are needed in this definition. Indeed, condition (ii) does not imply condition (i). To see why, consider a (simple) arbitrage opportunity \((\alpha _{0},\alpha )\in \mathcal {A}(0)\) with admissibility bound c and value process X t that satisfies X 0 = 0, X T ≥ 0, and \(\mathbb {P}(X_{T}>0)>0\). Define the (constant) sequence of admissible s.f.t.s.’s using the simple arbitrage opportunity, i.e. (α 0, α)n = (α 0, α) whose time T value process \(X_{T}^{n}=X_{T}\) approaches (equals) χ = X T where χ ≥ 0 with \(\mathbb {P}(\chi >0)>0\). This constant sequence of admissible s.f.t.s.’s satisfies all of the properties of condition (ii) except that the sequence’s admissibility bounds c n = c do not converge to 0.

We now show that Definition 27 of NFLVR is equivalent to D&S.

Theorem 24 (Equivalence of NFLVR Definitions)

NFLVR is equivalent to D&S

Proof

(Step 1) Show a FLVR implies a D&S.

Let \((\alpha _{0},\alpha )_{i}\in \mathcal {A}(x)\) be a FLVR, i.e. \((\alpha _{0},\alpha )_{i}\in \mathcal {A}(x)\) with initial value x ≥ 0, value processes \(X_{t}^{i}\), lower admissibility bounds 0 ≥ c i where ∃c ≤ 0 with c i ≥ c for all i, and a \(\mathcal {F}_{T}\)-measurable random variable χ ≥ x with \(\mathbb {P}(\chi >x)>0\) such that \(X_{T}^{i}\rightarrow \chi \) in probability.

Now, we have 0 ≥ c i ≥ c for all i.

Thus, there exists a subsequence n such that c i → c ∗∈ [0, c] with c ≤ 0. This implies 0 ≥ c ∗.

Consider \((\alpha _{0},\alpha )_{n}\in \mathcal {A}(x)\). Define \((\tilde {\alpha }_{0},\tilde {\alpha })_{n}=(\alpha _{0}-c^{*},\alpha )_{n}\).

This trading strategy has initial wealth \(\tilde {x}=x-c^{*}\geq 0\).

The value process is \(\tilde {X}_{t}=X_{t}-c^{*}\).

It is self-financing because this trading strategy just adds − c ∗≥ 0 additional dollars to the mma in the original s.f.t.s. for all t and holds this new position for all t.

The admissibility bounds are \(\tilde {c}_{n}=min\{c_{n}-c^{*},0\}\) for all n with \(\tilde {c}_{n}=min\{c_{n}-c^{*},0\}\rightarrow 0\).

Finally, we have that

\(\tilde {X}_{T}^{n}\rightarrow \tilde {\chi }=\chi -c^{*}\) in probability and

\(\tilde {\chi }=\chi -c^{*}\geq x-c^{*}=\tilde {x}\) with \(\mathbb {P}(\tilde {\chi }=\chi -c^{*}>x-c^{*}=\tilde {x})>0\).

Hence, this is a D&S.

(Step 2) Show a D&S implies a FLVR.

(Case a) Let \((\alpha _{0},\alpha )_{n}\in \mathcal {A}(x)\) be a simple arbitrage opportunity with admissibility bound c ≤ 0 and value process X t that satisfies X 0 = 0, X T ≥ 0, and \(\mathbb {P}(X_{T}>0)>0\). Then, define the (constant) sequence of admissible s.f.t.s.’s using the simple arbitrage opportunity, i.e. (α 0, α)n = (α 0, α) whose time T value process \(X_{T}^{n}=X_{T}\) approaches (equals) χ = X T where χ ≥ 0 with \(\mathbb {P}(\chi >0)>0\) with lower admissibility bounds c n = c ≥ c for all n. This is a FLVR.

(Case b) Let \((\alpha _{0},\alpha )_{n}\in \mathcal {A}(0)\) with value processes \(X_{t}^{n}\), lower admissibility bounds c n ≤ 0, and a \(\mathcal {F}_{T}\)-measurable random variable χ ≥ 0 with \(\mathbb {P}(\chi >0)>0\) such that c n → 0 and \(X_{T}^{n}\rightarrow \chi \) in probability.

Note that since c n → 0, there exists a N and c < 0 such that for all n ≥ N, c n ≥ c.

Consider the sequence of admissible s.f.t.s.’s \((\alpha _{0},\alpha )_{n=N}^{\infty }\in \mathcal {A}(0)\). This is a FLVR. This completes the proof.

We can restate this theorem as NFLV R⇔NA + DS(ii). From Theorem 12, we have NFLV R⇔NA + NUBPR. Consequently, NUBPR⇔DS(ii). This completes the characterization.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jarrow, R.A. (2021). The Fundamental Theorems. In: Continuous-Time Asset Pricing Theory. Springer Finance(). Springer, Cham. https://doi.org/10.1007/978-3-030-74410-6_2

Download citation

Publish with us

Policies and ethics