Skip to main content

3D X-Ray Characterization of Energy Storage and Conversion Devices

  • Chapter
  • First Online:
Advances in Sustainable Energy

Abstract

Energy storage and conversion devices including rechargeable batteries, fuel cells, and electrolyzers are at the forefront of the global effort to tackle climate change, and there has been an intensification in research and development into novel electrochemical technologies. X-rays, with their ability to penetrate matter, are a powerful tool that can be harnessed to characterize the performance and degradation of these devices, providing a wealth of information about the electronic states, crystalline ordering, and microstructures of the materials within, spanning multiple length scales. This chapter will provide the basic theories underpinning various X-ray characterization methods, discuss their applications, and provide a perspective on the potential of X-rays to illuminate the routes to the commercialization of novel electrochemical technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://matweb.com/search/datasheettext.aspx?matguid=4a9f3bec3abc4178bfeb290a68784b5a

References

  1. McBreen J, Balasubramanian M (2002) Rechargeable lithium-ion battery cathodes: in-situ xas. JOM 54(3):25–28

    Article  Google Scholar 

  2. Buchberger I, Seidlmayer S, Pokharel A, Piana M, Hattendorff J, Kudejova P, Gasteiger HA (2015) Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J Electrochem Soc 162(14):A2737–A2746

    Article  Google Scholar 

  3. Meirer F, Cabana J, Liu Y, Mehta A, Andrews JC, Pianetta P (2011) Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat 18(5):773–781

    Article  Google Scholar 

  4. Shearing PR, Howard LE, Jørgensen PS, Brandon NP, Harris SJ (2010) Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem Commun 12(3):374–377

    Article  Google Scholar 

  5. Daemi SR, Brett DJ, Shearing PR (2017) A lab-based multi-length scale approach to characterize lithium-ion cathode materials. ECS Trans 77(11):1119–1124

    Article  Google Scholar 

  6. Eastwood DS, Bradley RS, Tariq F, Cooper SJ, Taiwo OO, Gelb J, Shearing PR (2014) The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes. Nucl Instrum Methods Phys Res, Sect B 324:118–123

    Article  Google Scholar 

  7. Jiao LA, Li X, Ren LL, Kong LY, Hong YL, Li ZW, Tao XF (2015) 3D structural properties study on compact LiFePO4s based on X-ray computed tomography technique. Powder Technol 281:1–6

    Article  Google Scholar 

  8. James RW (1954) The optical principles of the diffraction of X—rays (G. Bell and Sons, 1965) LG ParraLL. Phys Rev 95:359

    Google Scholar 

  9. Brown JG (2012) X-rays and Their Applications. Springer Science & Business Media, Berlin, pp 13–36

    Google Scholar 

  10. Evans RD, Evans RD (1955) The atomic nucleus, vol 582. McGraw-Hill, New York, pp 1–972

    MATH  Google Scholar 

  11. Banhart J (2008) Advanced tomographic methods in materials research and engineering, vol 66. Oxford University Press, pp 19–34

    Book  MATH  Google Scholar 

  12. Hubbell JH (1982) Photon mass attenuation and energy-absorption coefficients. Int J Appl Radiat Isot 33(11):1269–1290

    Article  Google Scholar 

  13. Hubbell JH, Seltzer SM (1996) NIST standard reference database 126. National Institute of Standards and Technology, Gaithersburg, MD

    Google Scholar 

  14. Endrizzi M (2018) X-ray phase-contrast imaging. In: Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, vol 878, pp 88–98

    Google Scholar 

  15. Landis EN, Keane DT (2010) X-ray microtomography. Mater Charact 61(12):1305–1316

    Article  Google Scholar 

  16. Hsieh J (2003) Computed tomography: principles, design, artifacts, and recent advances, vol 114. SPIE Press, pp 1–383

    Google Scholar 

  17. Salvo L, Suéry M, Marmottant A, Limodin N, Bernard D (2010) 3D imaging in material science: application of X-ray tomography. Comptes Rendus Physique 11(9–10):641–649

    Article  Google Scholar 

  18. Withers PJ (2007) X-ray nanotomography. Mater Today 10(12):26–34

    Article  Google Scholar 

  19. Flannery BP, Deckman HW, Roberge WG, D'AMICO KL (1987) Three-dimensional X-ray microtomography. Science 237(4821):1439–1444

    Article  Google Scholar 

  20. Shearing PR, Eastwood DS, Bradley RS, Gelb J, Cooper SJ, Tariq F, Lee PD (2013) Exploring electrochemical devices using X-ray microscopy: 3D micro-structure of batteries and fuel cells. Microsc Anal 27(2):19–22

    Google Scholar 

  21. Kinney JH, Nichols MC (1992) X-ray tomographic microscopy (XTM) using synchrotron radiation. Annu Rev Mater Sci 22(1):121–152

    Article  Google Scholar 

  22. Nelson J, Yang Y, Misra S, Andrews JC, Cui Y, Toney MF (2013, September) Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries. In XRay Nanoimaging: Instruments and Methods, vol 8851. International Society for Optics and Photonics, p 88510B

    Google Scholar 

  23. Brown G, Coates D, Kaba B, Barrera T, Nguyen D (2002, January) X-ray computed tomography (CT) critical nondestructive evaluation (NDE) of nickel-hydrogen spacecraft batteries. In: In Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No. 02TH8576). IEEE, p 263

    Chapter  Google Scholar 

  24. Haibel A, Manke I, Melzer A, Banhart J (2010) In situ microtomographic monitoring of discharging processes in alkaline cells. J Electrochem Soc 157(4):A387

    Article  Google Scholar 

  25. Yufit V, Shearing P, Hamilton RW, Lee PD, Wu M, Brandon NP (2011) Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography. Electrochem Commun 13(6):608–610

    Article  Google Scholar 

  26. Chen-Wiegart YCK, Shearing P, Yuan Q, Tkachuk A, Wang J (2012) 3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography. Electrochem Commun 21:58–61

    Article  Google Scholar 

  27. Chen-Wiegart YCK, Liu Z, Faber KT, Barnett SA, Wang J (2013) 3D analysis of a LiCoO2–Li (Ni1/3Mn1/3Co1/3) O2 Li-ion battery positive electrode using x-ray nano-tomography. Electrochem Commun 28:127–130

    Article  Google Scholar 

  28. Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V (2013) Electrode materials: x-ray tomography of porous, transition metal oxide based lithium ion battery electrodes (Adv. Energy Mater. 7/2013). Adv Energy Mater 3(7):825–825

    Article  Google Scholar 

  29. Ebner M, Marone F, Stampanoni M, Wood V (2013) Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342(6159):716–720

    Article  Google Scholar 

  30. Wang J, Chen-Wiegart YCK, Wang J (2014) In situ three-dimensional synchrotron X-ray nanotomography of the (De) lithiation processes in tin anodes. Angew Chem Int Ed 53(17):4460–4464

    Article  Google Scholar 

  31. Etiemble A, Adrien J, Maire E, Idrissi H, Reyter D, Roué L (2014) 3D morphological analysis of copper foams as current collectors for Li-ion batteries by means of X-ray tomography. Mater Sci Eng B 187:1–8

    Article  Google Scholar 

  32. Eastwood DS, Bayley PM, Chang HJ, Taiwo OO, Vila-Comamala J, Brett DJ, Lee PD (2015) Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging. Chem Commun 51(2):266–268

    Article  Google Scholar 

  33. Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP (2014) Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater 13(1):69–73

    Article  Google Scholar 

  34. Heenan TM, Bailey JJ, Lu X, Robinson JB, Iacoviello F, Finegan DP, Shearing PR (2017) Three-phase segmentation of solid oxide fuel cell anode materials using lab based X-ray nanocomputed tomography. Fuel Cells 17(1):75–82

    Article  Google Scholar 

  35. Zhang Z, Sadeghi MA, Jervis R, Ye S, Gostick JT, Barralet JE, Merle G (2019) Tailoring carbon nanotube microsphere architectures with controlled porosity. Adv Funct Mater 29(42):1903983

    Article  Google Scholar 

  36. Kok MD, Jervis R, Brett D, Shearing PR, Gostick JT (2018) Insights into the effect of structural heterogeneity in carbonized electrospun fibrous Mats for flow battery electrodes by X-ray tomography. Small 14(9):1703616

    Article  Google Scholar 

  37. Jervis R, Kok MD, Montagut J, Gostick JT, Brett DJ, Shearing PR (2018) X-ray Nano computed tomography of electrospun fibrous Mats as flow battery electrodes. Energ Technol 6(12):2488–2500

    Article  Google Scholar 

  38. Kok MD, Jervis R, Tranter TG, Sadeghi MA, Brett DJ, Shearing PR, Gostick JT (2019) Mass transfer in fibrous media with varying anisotropy for flow battery electrodes: direct numerical simulations with 3D X-ray computed tomography. Chem Eng Sci 196:104–115

    Article  Google Scholar 

  39. Ribadeneyra MC, Grogan L, Au H, Schlee P, Herou S, Neville T, Jorge AB (2020) Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries. Carbon 157:847–856

    Article  Google Scholar 

  40. Brown LD, Neville TP, Jervis R, Mason TJ, Shearing PR, Brett DJ (2016) The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries. J Energy Storage 8:91–98

    Article  Google Scholar 

  41. Jervis R, Kok MD, Neville TP, Meyer Q, Brown LD, Iacoviello F, Shearing PR (2018) In situ compression and X-ray computed tomography of flow battery electrodes. J Energy Chem 27(5):1353–1361

    Article  Google Scholar 

  42. Qiu G, Dennison CR, Knehr KW, Kumbur EC, Sun Y (2012) Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries. J Power Sources 219:223–234

    Article  Google Scholar 

  43. Banerjee R, Bevilacqua N, Mohseninia A, Wiedemann B, Wilhelm F, Scholta J, Zeis R (2019) Carbon felt electrodes for redox flow battery: Impact of compression on transport properties. J Energy Storage 26:100997

    Article  Google Scholar 

  44. Bevilacqua N, Eifert L, Banerjee R, Köble K, Faragó T, Zuber M, Zeis R (2019) Visualization of electrolyte flow in vanadium redox flow batteries using synchrotron X-ray radiography and tomography–impact of electrolyte species and electrode compression. J Power Sources 439:227071

    Article  Google Scholar 

  45. Jervis R, Brown LD, Neville TP, Millichamp J, Finegan DP, Heenan TM, Shearing PR (2016) Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries. J Phys D Appl Phys 49(43):434002

    Article  Google Scholar 

  46. Tariq F, Rubio-Garcia J, Yufit V, Bertei A, Chakrabarti BK, Kucernak A, Brandon N (2018) Uncovering the mechanisms of electrolyte permeation in porous electrodes for redox flow batteries through real time in situ 3D imaging. Sustainable Energy Fuels 2(9):2068–2080

    Article  Google Scholar 

  47. Trogadas P, Taiwo OO, Tjaden B, Neville TP, Yun S, Parrondo J, Shearing PR (2014) X-ray micro-tomography as a diagnostic tool for the electrode degradation in vanadium redox flow batteries. Electrochem Commun 48:155–159

    Article  Google Scholar 

  48. Schlee P, Herou S, Jervis R, Shearing PR, Brett DJ, Baker D, Titirici MM (2019) Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. Chem Sci 10(10):2980–2988

    Article  Google Scholar 

  49. Abouelamaiem DI, He G, Parkin I, Neville TP, Jorge AB, Ji S, Brett DJ (2018) Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy Fuels 2(4):772–785

    Article  Google Scholar 

  50. Liu X, Jervis R, Maher RC, Villar-Garcia IJ, Naylor-Marlow M, Shearing PR, Wu B (2016) 3D-printed structural pseudocapacitors. Adv Material Technol 1(9):1600167

    Article  Google Scholar 

  51. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66(12):5486–5492

    Article  Google Scholar 

  52. Mayo SC, Stevenson AW, Wilkins SW (2012) In-line phase-contrast X-ray imaging and tomography for materials science. Materials 5(5):937–965

    Article  Google Scholar 

  53. Gureyev TE, Mayo SC, Myers DE, Nesterets Y, Paganin DM, Pogany A, Wilkins SW (2009) Refracting Röntgen’s rays: propagation-based x-ray phase contrast for biomedical imaging. J Appl Phys 105(10):102005

    Article  Google Scholar 

  54. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206(1):33–40

    Article  MathSciNet  Google Scholar 

  55. Zabler S, Cloetens P, Guigay JP, Baruchel J, Schlenker M (2005) Optimization of phase contrast imaging using hard x rays. Rev Sci Instrum 76(7):073705

    Article  Google Scholar 

  56. Pogany A, Gao D, Wilkins SW (1997) Contrast and resolution in imaging with a microfocus x-ray source. Rev Sci Instrum 68(7):2774–2782

    Article  Google Scholar 

  57. Tkachuk A, Duewer F, Cui H, Feser M, Wang S, Yun W (2007) X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using cu rotating anode X-ray source. Zeitschrift für Kristallographie-Crystalline Materials 222(11):650–655

    Article  Google Scholar 

  58. Shearing PR, Golbert J, Chater RJ, Brandon NP (2009) 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chem Eng Sci 64(17):3928–3933

    Article  Google Scholar 

  59. Liu Z, Cronin JS, Yu-chen K, Wilson JR, Yakal-Kremski KJ, Wang J, Barnett SA (2013) Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li (Ni1/3Mn1/3Co1/3) O2 lithium-ion battery cathodes. J Power Sources 227:267–274

    Article  Google Scholar 

  60. Wang J, Chen-Wiegart YCK, Wang J (2013) In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging. Chem Commun 49(58):6480–6482

    Article  Google Scholar 

  61. Wang J, Chen-Wiegart YCK, Wang J (2014) In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy. Nat Commun 5(1):1–10

    Google Scholar 

  62. Wang J, Karen Chen-Wiegart Y-C, Eng C, Shen Q, Wang J (2016) Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles. Nat Commun 7:12372

    Article  Google Scholar 

  63. Zhao C, Wada T, De Andrade V, Gürsoy D, Kato H, Chen-Wiegart YCK (2018) Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nanotomography. Nano Energy 52:381–390

    Article  Google Scholar 

  64. Yan B, Lim C, Yin L, Zhu L (2012) Three dimensional simulation of galvanostatic discharge of LiCoO2 cathode based on X-ray nano-CT images. J Electrochem Soc 159(10):A1604

    Article  Google Scholar 

  65. Bailey JJ, Heenan TMM, Finegan DP, Lu X, Daemi SR, Iacoviello F, Shearing PR (2017) Laser-preparation of geometrically optimised samples for X-ray nano-CT. J Microsc 267(3):384–396

    Article  Google Scholar 

  66. Barton C, Noto D (Eds) (2017, August) Selected Proceedings from the 231st ECS Meeting: ECS Transactions: Volume 77, Issue 11, pp. 447–455: New Orleans, LA, Spring 2017. The Electrochemical Society. Vol 77. The Electrochemical Society, Pennington, pp 447–455

    Google Scholar 

  67. Müller S, Pietsch P, Brandt BE, Baade P, De Andrade V, De Carlo F, Wood V (2018) Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging. Nat Commun 9(1):1–8

    Article  Google Scholar 

  68. Heenan TMM, Finegan DP, Tjaden B, Lu X, Iacoviello F, Millichamp J, Shearing PR (2018) 4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging. Nano Energy 47:556–565

    Article  Google Scholar 

  69. Finegan DP, Cooper SJ, Tjaden B, Taiwo OO, Gelb J, Hinds G, Shearing PR (2016) Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy. J Power Sources 333:184–192

    Article  Google Scholar 

  70. Daemi SR, Tan C, Volkenandt T, Cooper SJ, Palacios-Padros A, Cookson J, Shearing PR (2018) Visualizing the carbon binder phase of battery electrodes in three dimensions. ACS Appl Energy Materials 1(8):3702–3710

    Article  Google Scholar 

  71. Shearing P, Wu Y, Harris SJ, Brandon N (2011) In situ X-ray spectroscopy and imaging of battery materials. The Electrochemical Society Interface 20(3):43–47

    Article  Google Scholar 

  72. Gent WE, Li Y, Ahn S, Lim J, Liu Y, Wise AM, Chueh WC (2016) Persistent state-of-charge heterogeneity in relaxed, partially charged Li1− xNi1/3Co1/3Mn1/3O2 secondary particles. Adv Mater 28(31):6631–6638

    Article  Google Scholar 

  73. Besli MM, Xia S, Kuppan S, Huang Y, Metzger M, Shukla AK, Liu Y (2018) Mesoscale chemomechanical interplay of the LiNi0. 8Co0. 15Al0. 05O2 cathode in solid-state polymer batteries. Chem Mater 31(2):491–501

    Article  Google Scholar 

  74. Vamvakeros A, Jacques SD, Di Michiel M, Senecal P, Middelkoop V, Cernik RJ, Beale AM (2016) Interlaced X-ray diffraction computed tomography. J Appl Crystallogr 49(2):485–496

    Article  Google Scholar 

  75. Lim J, Li Y, Alsem DH, So H, Lee SC, Bai P, Chueh WC (2016) Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 353(6299):566–571

    Article  Google Scholar 

  76. Price SWT, Ignatyev K, Geraki K, Basham M, Filik J, Vo NT, Mosselmans JFW (2015) Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT. Phys Chem Chem Phys 17(1):521–529

    Article  Google Scholar 

  77. Holler M, Raabe J, Diaz A, Guizar-Sicairos M, Quitmann C, Menzel A, Bunk O (2012) An instrument for 3D x-ray nano-imaging. Rev Sci Instrum 83(7):073703

    Article  Google Scholar 

  78. Van der Veen F, Pfeiffer F (2004) Coherent x-ray scattering. J Phys Condens Matter 16(28):5003–5030

    Article  Google Scholar 

  79. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21(15):2758–2769

    Article  Google Scholar 

  80. Miao J, Ishikawa T, Robinson IK, Murnane MM (2015) Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science 348(6234):530–535

    Article  MathSciNet  MATH  Google Scholar 

  81. Chapman HN, Nugent KA (2010) Coherent lensless X-ray imaging. Nat Photonics 4(12):833–839

    Article  Google Scholar 

  82. Robinson I, Harder R (2009) Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 8(4):291–298

    Article  Google Scholar 

  83. Pfeifer MA, Williams GJ, Vartanyants IA, Harder R, Robinson IK (2006) Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442(7098):63–66

    Article  Google Scholar 

  84. Ulvestad A, Singer A, Clark JN, Cho HM, Kim JW, Harder R, Shpyrko OG (2015) Topological defect dynamics in operando battery nanoparticles. Science 348(6241):1344–1347

    Article  Google Scholar 

  85. Singer A, Zhang M, Hy S, Cela D, Fang C, Wynn TA, Shpyrko OG (2018) Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat Energy 3(8):641–647

    Article  Google Scholar 

  86. Pfeiffer F (2018) X-ray ptychography. Nat Photonics 12(1):9–17

    Article  Google Scholar 

  87. Tsai EH, Billaud J, Sanchez DF, Ihli J, Odstrčil M, Holler M, Guizar-Sicairos M (2019) Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials. IScience 11:356–365

    Article  Google Scholar 

  88. Takahashi Y, Suzuki A, Furutaku S, Yamauchi K, Kohmura Y, Ishikawa T (2013) Bragg x-ray ptychography of a silicon crystal: Visualization of the dislocation strain field and the production of a vortex beam. Phys Rev B 87(12):121201

    Article  Google Scholar 

  89. Hoppe R, Reinhardt J, Hofmann G, Patommel J, Grunwaldt JD, Damsgaard CD, Schroer CG (2013) High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography. Appl Phys Lett 102(20):203104

    Article  Google Scholar 

  90. Lim C, Kang H, De Andrade V, De Carlo F, Zhu L (2017) Hard X-ray-induced damage on carbon–binder matrix for in situ synchrotron transmission X-ray microscopy tomography of Li-ion batteries. J Synchrotron Radiat 24(3):695–698

    Article  Google Scholar 

  91. Tan C, Daemi SR, Taiwo OO, Heenan TM, Brett DJ, Shearing PR (2018) Evolution of electrochemical cell designs for in-situ and operando 3D characterization. Materials 11(11):2157

    Article  Google Scholar 

  92. Fisher SL, Holmes DJ, Jørgensen JS, Gajjar P, Behnsen J, Lionheart WR, Withers PJ (2019) Laminography in the lab: imaging planar objects using a conventional x-ray CT scanner. Meas Sci Technol 30(3):035401

    Article  Google Scholar 

  93. Lu X, Heenan TM, Bailey JJ, Li T, Li K, Brett DJ, Shearing PR (2017) Correlation between triple phase boundary and the microstructure of solid oxide fuel cell anodes: the role of composition, porosity and Ni densification. J Power Sources 365:210–219

    Article  Google Scholar 

  94. Lu X, Li T, Bertei A, Cho JI, Heenan TM, Rabuni MF, Shearing PR (2018) The application of hierarchical structures in energy devices: new insights into the design of solid oxide fuel cells with enhanced mass transport. Energy Environ Sci 11(9):2390–2403

    Article  Google Scholar 

  95. Danner T, Zhu G, Hofmann AF, Latz A (2015) Modeling of nano-structured cathodes for improved lithium-sulfur batteries. Electrochim Acta 184:124–133

    Article  Google Scholar 

  96. Thangavel V, Xue KH, Mammeri Y, Quiroga M, Mastouri A, Guéry C, Franco AA (2016) A microstructurally resolved model for Li-S batteries assessing the impact of the cathode design on the discharge performance. J Electrochem Soc 163(13):A2817–A2829

    Article  Google Scholar 

  97. Tan C, Kok MD, Daemi SR, Brett DJ, Shearing PR (2019) Three-dimensional image based modelling of transport parameters in lithium–sulfur batteries. Phys Chem Chem Phys 21(8):4145–4154

    Article  Google Scholar 

  98. Izzo JR Jr, Joshi AS, Grew KN, Chiu WK, Tkachuk A, Wang SH, Yun W (2008) Nondestructive reconstruction and analysis of SOFC anodes using X-ray computed tomography at sub-50 nm resolution. J Electrochem Soc 155(5):B504

    Article  Google Scholar 

  99. Ludwig W, Lauridsen EM, Schmidt S, Poulsen HF, Baruchel J (2007) High-resolution three-dimensional mapping of individual grains in polycrystals by topotomography. J Appl Crystallogr 40(5):905–911

    Article  Google Scholar 

  100. Ludwig W, Schmidt S, Lauridsen EM, Poulsen HF (2008) X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I Direct Beam Case J Applied Crystallography 41(2):302–309

    Article  Google Scholar 

  101. Johnson G, King A, Honnicke MG, Marrow J, Ludwig W (2008) X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The Combined Case J Applied Crystallography 41(2):310–318

    Article  Google Scholar 

  102. Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Buffiere JY (2009) Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80(3):033905

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Faraday Institution (Faraday. ac. The UK; EP/S003053/1, Grant Number FIRG001, FIRG003, FIRG 007). PRS would like to acknowledge the Royal Academy of Engineering (CiET1718\59) for financial support.

Author Contribution

All authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, C., Leach, A.S., Heenan, T.M.M., Jervis, R., Brett, D.J.L., Shearing, P.R. (2021). 3D X-Ray Characterization of Energy Storage and Conversion Devices. In: Gao, Yj., Song, W., Liu, J.L., Bashir, S. (eds) Advances in Sustainable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-74406-9_18

Download citation

Publish with us

Policies and ethics