Skip to main content

Promising Clean Energy Development: Practice, Challenges, and Policy Implications

  • Chapter
  • First Online:
Advances in Sustainable Energy

Abstract

Current models about the epidemiology, and pathophysiology, of individual affected with severe acute respiratory syndrome corona virus-2 (SARS2) infection presents a causative link between congenital heart disease, elevation in arterial blood pressure, airway obstruction, and pulmonary hypertension preconditions. The propensity to infection is influenced by particulate matter and poor air quality that is often exhibited in the processes of generating electrical power or operation of heavy industries (steel or cement manufacturing). This is in addition to the well-document rise of carbon dioxide, generation of acid rain, greenhouse gases, and changes in global weather patterns. The combined threat of global warming and the SARS2 epidemic has focused minds on the mitigation strategies by substituting fossil fuels with cleaner alternates or replacement. One path for the utilization of a cleaner energy production system is the conversion of coal to hydrogen production as the hydrogen-based economy is discussed. The challenges and likely implementation of hydrogen as an emerging energy resource during the transition from coal are described, taking into account the problems related to hydrogen production, distribution, storage, and use. The integration of renewable and nonrenewable hydrogen sources (electron, photon, pumped hydro, or carbon) is evaluated by taking into account their availability, levelized cost, and the efficiency to transform these resources into hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Energy Information Administration, (EIA) (2020) Electricity generation, capacity, and sales in the United States. https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.php

  2. Capuano L (2018) International energy outlook 2018 (IEO2018). US Energy Information Administration (EIA): Washington, DC, USA, 2018, 21. https://www.hidropolitikakademi.org/uploads/wp/2018/07/International-Energy-Outlook-2018-IEO2018.pdf

  3. Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L (2016) International energy outlook 2016 with projections to 2040 (No. DOE/EIA-0484 (2016). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis. https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf#:~:text=International Energy Outlook 2016 With Projections to 2040, an analytical agency within the U.S. Department of Energy

  4. Sieminski A (2013) International energy outlook in 2013. US Energy Information Administration (EIA) Report Number: DOE/EIA-0484. https://www.eia.gov/pressroom/presentations/sieminski_07252013.pdf

  5. US Energy Information Administration, (EIA) (2017) Annual energy outlook 2015: with projections to 2040. https://www.osti.gov/servlets/purl/1296780

  6. Newell RG, Raimi D (2020) Global energy outlook comparison methods: 2020 update. https://media.rff.org/documents/Global_Energy_Outlook_Comparison_Methods_2020.pdf

  7. Beér, J. (2020). CO2 reduction and coal-based electricity generation, Chapter 15. In R. Malhotra (Ed.), Encyclopedia of sustainability science and technology series: Volume XVIII: Fossil energy (2nd ed., pp. 427–437). https://doi.org/10.1007/978-1-4939-9763-3

  8. Midilli A, Dincer I, Ay M (2006) Green energy strategies for sustainable development. Energy Policy 34(18):3623–3633

    Article  Google Scholar 

  9. Perera FP (2017) Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125(2):141–148

    Article  Google Scholar 

  10. Geissdoerfer M, Savaget P, Bocken NM, Hultink EJ (2017) The circular economy–a new sustainability paradigm? J Clean Prod 143:757–768

    Article  Google Scholar 

  11. Lazard.Com (2020) Levelized cost of energy and levelized cost of storage – 2020. https://www.lazard.com/perspective/lcoe2020

  12. US Environmental Protection Agency (2020) Air trends. https://www.epa.gov/air-trends

  13. Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bio-economy: a comprehensive review. Bioresour Technol 299:122585

    Article  Google Scholar 

  14. Munir M, Ahmad M, Saeed M, Waseem A, Rehan M, Nizami AS et al (2019) Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renew Sust Energ Rev 109:321–332

    Article  Google Scholar 

  15. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG et al (2019) A review of lignin structure, pretreatments, fermentation reactions, and biorefinery potential. Bioresour Technol 271:462–472

    Article  Google Scholar 

  16. Ho MC, Ong VZ, Wu TY (2019) The potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization–a review. Renew Sust Energ Rev 112:75–86

    Article  Google Scholar 

  17. Montoneri E (2017) Municipal waste treatment, technological scale-up, and commercial exploitation: the case of bio-waste lignin to soluble lignin-like polymers. In: Food waste reduction and valorisation. Springer, Cham, pp 79–120

    Chapter  Google Scholar 

  18. Nazir H, Batool M, Osorio FJB, Isaza-Ruiz M, Xu X, Vignarooban K et al (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 129:491–523

    Article  Google Scholar 

  19. Abdon A, Zhang X, Parra D, Patel MK, Bauer C, Worlitschek J (2017) Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales. Energy 139:1173–1187

    Article  Google Scholar 

  20. Zhao H, Wu Q, Hu S, Xu H, Rasmussen CN (2015) Review of energy storage system for wind power integration support. Appl Energy 137:545–553

    Article  Google Scholar 

  21. Riensche E, Stimming U, Unverzagt G (1998) Optimization of a 200 kW SOFC cogeneration power plant: part I: variation of process parameters. J Power Sources 73(2):251–256

    Article  Google Scholar 

  22. Schoenung SM (2001) Characteristics and technologies for long-vs. short-term energy storage. United States Department of Energy. https://prod-ng.sandia.gov/techlib-noauth/accesscontrol.cgi/2001/010765.pdf

  23. Denholm P, Kulcinski GL (2004) Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Convers Manag 45(13–14):2153–2172

    Article  Google Scholar 

  24. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19(3):291–312

    Article  Google Scholar 

  25. Rydh CJ (1999) Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J Power Sources 80(1–2):21–29

    Article  Google Scholar 

  26. Barton JP, Infield DG (2004) Energy storage and its use with intermittent renewable energy. IEEE Trans Energy Conver 19(2):441–448

    Article  Google Scholar 

  27. Baker J (2008) New technology and possible advances in energy storage. Energy Policy 36(12):4368–4373

    Article  Google Scholar 

  28. Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Overview of current and future energy storage technologies for electric power applications. Renew Sust Energ Rev 13(6–7):1513–1522

    Article  Google Scholar 

  29. Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sust Energ Rev 42:569–596

    Article  Google Scholar 

  30. Smith SC, Sen PK, Kroposki B (2008, July) Advancement of energy storage devices and applications in the electrical power system. In: 2008 IEEE power and energy society general meeting-conversion and delivery of electrical energy in the 21st century. IEEE, pp 1–8

    Google Scholar 

  31. Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W (2010) Energy storage for mitigating the variability of renewable electricity sources: an updated review. Energy Sustain Dev 14(4):302–314

    Article  Google Scholar 

  32. Liu H, Wei Z, He W, Zhao J (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers Manag 150:304–330

    Article  Google Scholar 

  33. Smith W (2000) The role of fuel cells in energy storage. J Power Sources 86(1–2):74–83

    Article  Google Scholar 

  34. Benitez LE, Benitez PC, Van Kooten GC (2008) The economics of wind power with energy storage. Energy Econ 30(4):1973–1989

    Article  Google Scholar 

  35. Li P (2008) Energy storage is the core of renewable technologies. IEEE Nanotechnol Mag 2(4):13–18

    Article  Google Scholar 

  36. Thaker S, Oni AO, Kumar A (2017) Techno-economic evaluation of solar-based thermal energy storage systems. Energy Convers Manag 153:423–434

    Article  Google Scholar 

  37. Liu M, Tay NS, Bell S, Belusko M, Jacob R, Will G et al (2016) Review on concentrating solar power plants and new developments in high-temperature thermal energy storage technologies. Renew Sust Energ Rev 53:1411–1432

    Article  Google Scholar 

  38. Hidalgo DB, Alonso JG, Pérez YM (2017) Costos De Las Tecnologías De Almacenamiento De Energía Térmica. Revista Centro Azúcar 44(4):10–10

    Google Scholar 

  39. Brownson DA, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196(11):4873–4885

    Article  Google Scholar 

  40. Flueckiger SM, Iverson BD, Garimella SV (2014) Economic optimization of a concentrating solar power plant with molten-salt thermocline storage. J Solar Energy Eng 136(1):011015

    Article  Google Scholar 

  41. Hameer S, van Niekerk JL (2015) A review of large-scale electrical energy storage. Int J Hydrog Energy 39(9):1179–1195

    Google Scholar 

  42. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536

    Article  Google Scholar 

  43. Amrouche SO, Rekioua D, Rekioua T, Bacha S (2016) Overview of energy storage in renewable energy systems. Int J Hydrog Energy 41(45):20914–20927

    Article  Google Scholar 

  44. Jülch V (2016) Comparison of electricity storage options using the levelized cost of storage (LCOS) method. Appl Energy 183:1594–1606

    Article  Google Scholar 

  45. Amirante R, Cassone E, Distaso E, Tamburrano P (2017) Overview of recent developments in energy storage: mechanical, electrochemical, and hydrogen technologies. Energy Convers Manag 132:372–387

    Article  Google Scholar 

  46. Yulong P, Cavagnino A, Vaschetto S, Feng C, Tenconi A (2017, June) Flywheel energy storage systems for power systems application. In: 2017 6th international conference on clean electrical power (ICCEP). IEEE, pp 492–501

    Chapter  Google Scholar 

  47. Buiskikh D, Zakeri B, Syri S, Kauranen P (2018, June) Economic feasibility of flow batteries in grid-scale applications. In: 2018 15th international conference on the European energy market (EEM). IEEE, pp 1–5

    Google Scholar 

  48. Schmidt O, Melchior S, Hawkes A, Staffell I (2019) Projecting the future levelized cost of electricity storage technologies. Joule 3(1):81–100

    Article  Google Scholar 

  49. Mostafa MH, Aleem SHA, Ali SG, Ali ZM, Abdelaziz AY (2020) Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics. J Energy Storage 29:101345

    Article  Google Scholar 

  50. Rahman MM, Oni AO, Gemechu E, Kumar A (2020) Assessment of energy storage technologies: a review. Energy Convers Manag 223:113295

    Article  Google Scholar 

  51. Aneke M, Wang M (2016) Energy storage technologies and real-life applications–a state of the art review. Appl Energy 179:350–377

    Article  Google Scholar 

  52. Sammes N (ed) (2006) Fuel cell technology: reaching towards commercialization. Springer Science & Business Media, London

    Google Scholar 

  53. Davison J, Mancuso L, Ferrari N (2014) Costs of CO2 capture technologies in coal-fired power and hydrogen plants. Energy Procedia 63:7598–7607

    Article  Google Scholar 

  54. Hirth L (2013) The market value of variable renewables: the effect of solar wind power variability on their relative price. Energy Econ 38:218–236

    Article  Google Scholar 

  55. Schröder A, Kunz F, Meiss J, Mendelevitch R, Von Hirschhausen C (2013) Current and prospective costs of electricity generation until 2050 (No. 68). DIW data documentation. https://www.econstor.eu/bitstream/10419/80348/1/757528015.pdf

  56. Zhang Y, Hua QS, Sun L, Liu Q (2020) Life cycle optimization of renewable energy systems configuration with hybrid battery/hydrogen storage: a comparative study. J Energy Storage 30:101470

    Article  Google Scholar 

  57. Biggar DR, Hesamzadeh MR (2014) The economics of electricity markets. Wiley, Chichester

    Book  Google Scholar 

  58. Hirth L (2015) The optimal share of variable renewables: how the variability of wind and solar power affects their welfare-optimal deployment. Energy J 36(1):149–184

    Article  Google Scholar 

  59. Hirth L, Ueckerdt F, Edenhofer O (2016) Why wind is not coal: on the economics of electricity generation. Energy J 37(3):1–27

    Article  Google Scholar 

  60. Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3(4):1–11

    Article  Google Scholar 

  61. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S et al (2011) Voltage, stability, and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688

    Article  Google Scholar 

  62. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Article  Google Scholar 

  63. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57(1):102–120

    Article  Google Scholar 

  64. EngineeringToolBox.Com (2003) Fuels – densities and specific volume. https://www.engineeringtoolbox.com/fuels-densities-specific-volumes-d_166.html

  65. Aifantis KE, Hackney SA, Kumar RV (eds) (2010) High energy density lithium batteries: materials, engineering, applications. Wiley, Weinham

    Google Scholar 

  66. Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37(2):1954–1971

    Article  Google Scholar 

  67. Neutrium.net (2014) Specific energy and energy density of fuels. https://neutrium.net/properties/specific-energy-and-energy-density-of-fuels/#:~:text=CommonFuels

  68. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611

    Article  Google Scholar 

  69. Balthasar W (1984) Hydrogen production and technology: today, tomorrow, and beyond. Int J Hydrog Energy 9(8):649–668

    Article  Google Scholar 

  70. Ersöz A (2008) Investigation of hydrocarbon reforming processes for micro-cogeneration systems. Int J Hydrog Energy 33(23):7084–7094

    Article  Google Scholar 

  71. Steinberg M, Cheng HC (1989) Modern and prospective technologies for hydrogen production from fossil fuels. Int J Hydrog Energy 14(11):797–820

    Article  Google Scholar 

  72. Hidalgo D, Martín-Marroquín JM (2020) Power-to-methane, coupling CO2 capture with fuel production: an overview. Renew Sust Energ Rev 132:110057

    Article  Google Scholar 

  73. Koros WJ, Fleming GK (1993) Membrane-based gas separation. J Membr Sci 83(1):1–80

    Article  Google Scholar 

  74. Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects. Appl Catal B Environ 85(1–2):1–9

    Google Scholar 

  75. Damen K, van Troost M, Faaij A, Turkenburg W (2006) A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part a: review and selection of promising conversion and capture technologies. Prog Energy Combust Sci 32(2):215–246

    Article  Google Scholar 

  76. Yoon HC, Erickson PA (2008) Hydrogen from coal-derived methanol via autothermal reforming processes. Int J Hydrog Energy 33(1):57–63

    Article  Google Scholar 

  77. Kyriakou V, Garagounis I, Vourros A, Marnellos GE, Stoukides M (2018) A protonic ceramic membrane reactor for the production of hydrogen from coal steam gasification. J Membr Sci 553:163–170

    Article  Google Scholar 

  78. Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66

    Article  Google Scholar 

  79. Chen G, Andries J, Spliethoff H (2003) Catalytic pyrolysis of biomass for hydrogen-rich fuel gas production. Energy Convers Manag 44(14):2289–2296

    Article  Google Scholar 

  80. Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of the literature. Int J Hydrog Energy 26(1):13–28

    Article  Google Scholar 

  81. Minowa T, Ogi T (1998) Hydrogen production from cellulose using a reduced nickel catalyst. Catal Today 45(1–4):411–416

    Article  Google Scholar 

  82. Yu D, Aihara M, Antal MJ Jr (1993) Hydrogen production by steam reforming glucose in supercritical water. Energy Fuel 7(5):574–577

    Article  Google Scholar 

  83. Asada Y, Tokumoto M, Aihara Y, Oku M, Ishimi K, Wakayama T et al (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrog Energy 31(11):1509–1513

    Article  Google Scholar 

  84. Zhang Y, Ying Z, Zhou J, Liu J, Wang Z, Cen K (2014) Electrolysis of the Bunsen reaction and properties of the membrane in the sulfur–iodine thermochemical cycle. Ind Eng Chem Res 53(35):13581–13588

    Article  Google Scholar 

  85. Bhandari R, Trudewind CA, Zapp P (2014) Life cycle assessment of hydrogen production via electrolysis–a review. J Clean Prod 85:151–163

    Article  Google Scholar 

  86. Rozendal RA, Hamelers HV, Euverink GJ, Metz SJ, Buisman CJ (2006) Principle and perspectives of hydrogen production through bio catalyzed electrolysis. Int J Hydrog Energy 31(12):1632–1640

    Article  Google Scholar 

  87. ezzahra Chakik F, Kaddami M, Mikou M (2017) Effect of operating parameters on hydrogen production by electrolysis of water. Int J Hydrog Energy 42(40):25550–25557

    Article  Google Scholar 

  88. Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319(1–3):178–184

    Article  Google Scholar 

  89. David M, Ocampo-Martínez C, Sánchez-Peña R (2019) Advances in alkaline water electrolyzers: a review. J Energy Storage 23:392–403

    Article  Google Scholar 

  90. Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22(10–11):979–987

    Article  Google Scholar 

  91. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42(9):3401–3406

    Article  Google Scholar 

  92. Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33(21):6046–6057

    Article  Google Scholar 

  93. Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy 34(21):8799–8817

    Article  Google Scholar 

  94. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260

    Article  Google Scholar 

  95. Zhu J, Zäch M (2009) Nanostructured materials for photocatalytic hydrogen production. Curr Opin Colloid Interface Sci 4(14):260–269

    Article  Google Scholar 

  96. Bartels JR, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrog Energy 35(16):8371–8384

    Article  Google Scholar 

  97. Park S, Shao Y, Liu J, Wang Y (2012) Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy Environ Sci 5(11):9331–9344

    Article  Google Scholar 

  98. Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrog Energy 27(6):611–619

    Article  Google Scholar 

  99. Steinfeld A (2005) Solar thermochemical production of hydrogen––a review. Sol Energy 78(5):603–615

    Article  Google Scholar 

  100. Ashokkumar M (1998) An overview of semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrog Energy 23(6):427–438

    Article  Google Scholar 

  101. Liao CH, Huang CW, Wu J (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2(4):490–516

    Article  Google Scholar 

  102. Zhang HL, Baeyens J, Degrève J, Cacères G (2013) Concentrated solar power plants: review and design methodology. Renew Sust Energ Rev 22:466–481

    Article  Google Scholar 

  103. Zhang X, Peng T, Song S (2016) Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J Mater Chem A 4(7):2365–2402

    Article  Google Scholar 

  104. Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30(8):809–819

    Article  Google Scholar 

  105. Utgikar V, Thiesen T (2006) Life cycle assessment of high-temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrog Energy 31(7):939–944

    Article  Google Scholar 

  106. Balat M (2008) The potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy 33(15):4013–4029

    Article  Google Scholar 

  107. Charvin P, Stéphane A, Florent L, Gilles F (2008) Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energy Convers Manag 49(6):1547–1556

    Article  Google Scholar 

  108. Orhan MF, Dincer I, Naterer GF (2008) Cost analysis of a thermochemical Cu–Cl pilot plant for nuclear-based hydrogen production. Int J Hydrog Energy 33(21):6006–6020

    Article  Google Scholar 

  109. Roeb M, Neises M, Monnerie N, Call F, Simon H, Sattler C et al (2012) Materials-related aspects of thermochemical water and carbon dioxide splitting: a review. Materials 5(11):2015–2054

    Article  Google Scholar 

  110. Romero M, Steinfeld A (2012) Concentrating solar thermal power and thermochemical fuels. Energy Environ Sci 5(11):9234–9245

    Article  Google Scholar 

  111. Mishra G, Parida KM, Singh SK (2015) Facile fabrication of S-TiO2/β-SiC nanocomposite photocatalyst for hydrogen evolution under visible light irradiation. ACS Sustain Chem Eng 3(2):245–253

    Article  Google Scholar 

  112. Yartys VA, Lototsky MV (2004) An overview of hydrogen storage methods. In: Hydrogen materials science and chemistry of carbon nanomaterials. Springer, Dordrecht, pp 75–104

    Chapter  Google Scholar 

  113. Rashidi AM, Nouralishahi A, Khodadadi AA, Mortazavi Y, Karimi A, Kashefi K (2010) Modification of single-wall carbon nanotubes (SWNT) for hydrogen storage. Int J Hydrog Energy 35(17):9489–9495

    Article  Google Scholar 

  114. Lototskyy M, Yartys VA (2015) Comparative analysis of the efficiencies of hydrogen storage systems utilizing solid-state H storage materials. J Alloys Compd 645:S365–S373

    Article  Google Scholar 

  115. Lototskyy MV, Tolj I, Pickering L, Sita C, Barbir F, Yartys V (2017) The use of metal hydrides in fuel cell applications. Prog Nat Sci Mater Int 27(1):3–20

    Article  Google Scholar 

  116. Lai Q, Sun Y, Wang T, Modi P, Cazorla C, Demirci UB et al (2019) How to design hydrogen storage materials? Fundamentals, synthesis, and storage tanks. Adv Sustain Syst 3(9):1900043

    Article  Google Scholar 

  117. Yartys VA, Lototskyy MV, Akiba E, Albert R, Antonov VE, Ares JR et al (2019) Magnesium based materials for hydrogen-based energy storage: past, present, and future. Int J Hydrog Energy 44(15):7809–7859

    Article  Google Scholar 

  118. Aziz M, Wijayanta AT, Nandiyanto ABD (2020) Ammonia as effective hydrogen storage: a review on production, storage, and utilization. Energies 13(12):3062

    Article  Google Scholar 

  119. Hirscher M, Yartys VA, Baricco M, von Colbe JB, Blanchard D, Bowman RC Jr et al (2020) Materials for hydrogen-based energy storage–past, recent progress, and future outlook. J Alloys Compd 827:153548

    Article  Google Scholar 

  120. Yao B, Kuznetsov VL, Xiao T, Jie X, Gonzalez-Cortes S, Dilworth JR et al (2020) Fuels, power, and chemical periodicity. Phil Trans R Soc A 378(2180):20190308

    Article  Google Scholar 

  121. Moelling K, Broecker F (2020) Air microbiome and pollution: composition and potential effects on human health, including SARS coronavirus infection. J Environ Public Health 2020:1646943

    Article  Google Scholar 

  122. Ueckerdt F, Hirth L, Luderer G, Edenhofer O (2013) System LCOE: What are the costs of variable renewables?. Energy 63:61–75

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Petroleum Research Fund of the American Chemical Society (53827-UR10) and the Robert Welch Foundation (Departmental Grant, AC-0006). We thank the program chair and Dr. E. Gerald Meyer of the ENFL America Chemical Society for the opportunity to run or moderate symposia at the technical sessions. Lastly, The leadership at Texas A&M University-Kingsville, Department, College, and University level, as well as Springer Science+Business Media, LLC technical staff for their assistance in copy editing this and other book chapters.

Author Contributions

S. Bashir completed the initial draft including equations relating to thermodynamics. J.L. Liu, data for figures and Sai. Chava the data for hydrogen production and figure 6, and W. Song and Y. Gao who reviewed the final draft which was submitted by S. Chava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Bashir .

Editor information

Editors and Affiliations

Additional information

Dedicated to Dr. Peter J Derrick and Mr. Mohammed Bashir, Rest in Peace.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, S., Chava, S., Song, W., Gao, Yj., Liu, J.L. (2021). Promising Clean Energy Development: Practice, Challenges, and Policy Implications. In: Gao, Yj., Song, W., Liu, J.L., Bashir, S. (eds) Advances in Sustainable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-74406-9_1

Download citation

Publish with us

Policies and ethics