Skip to main content

Bioinspiration and Biomimicry in Lifestyle

  • Chapter
  • First Online:
Rationality and Scientific Lifestyle for Health

Abstract

Biomimetics is a new language that enables man to have effective communication with nature. Every human being encounters biomimetic products in normal daily lives, but they are not often recognized as such issues! From a biomimetic point of view, every phenomenon in nature is a source of inspiration to improve human life quality. The human lifestyle undergoes fundamental changes arising from the influence of biomimicry and bioinspiration in technology, health, art, and education. Nature seems to have the best solutions for everything. Every aspect of human life would be seriously affected by the emergence of new bioinspired tools, methods and capabilities at every scale from nano to macro and beyond. Biomimetics is a leading paradigm for the development of new technologies that potentially facilitate human lives. Expanding medical investigation to new bioinspired approaches accelerates innovations in healthcare. Art, education and architecture also gain considerable benefits from the revolution that biomimicry introduces into the human lifestyle. Nature knows best; by learning from its powerful lessons, we can model innovative strategies to successfull and fulfilling personal life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  PubMed  Google Scholar 

  • Alvarez-Lorenzo C, Concheiro A (2013) Bioinspired drug delivery systems. Curr Opin Biotechnol 24(6):1167–1173

    Article  PubMed  Google Scholar 

  • Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev™ Biomed Eng 40(5):363–408

    Google Scholar 

  • Amoozgar Z, Yeo Y (2012) Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdisc Rev Nanomed Nanobiotechnol 4(2):219–233

    Article  Google Scholar 

  • Ang H, Xiao T, Duan W (2009) Flight mechanism and design of biomimetic micro air vehicles. Sci China Ser E Technol Sci 52(12):3722–3728

    Article  Google Scholar 

  • Baldwin RG (2009) The climate for undergraduate teaching and learning in stem fields. New Dir Teach LEarn 2009(117):9–17

    Article  Google Scholar 

  • Balmert SC, Little SR (2012) Biomimetic delivery with micro-and nanoparticles. Adv Mater 24(28):3757–3778

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar-Cohen Y (2005) Biomimetics: mimicking and inspired-by biology. In: Smart structures and materials 2005: electroactive polymer actuators and devices (EAPAD). International Society for Optics and Photonics, pp 1–8

    Google Scholar 

  • Bar-Cohen Y (2016) Biomimetics: nature-based innovation. CRC Press

    Book  Google Scholar 

  • Bar-Cohen Y (2006) Biomimetics—using nature to inspire human innovation. Bioinspiration Biomimetics 1(1):1–12

    Google Scholar 

  • Batrakova EV, Gendelman HE, Kabanov AV (2011) Cell-mediated drug delivery. Expert Opin Drug Del 8(4):415–433

    Google Scholar 

  • Bennett J (2004) Organisational strategy. In: Clements-Croome D (ed) Intelligent buildings: design, management and operation. Thomas Telford, London, p 237

    Google Scholar 

  • Bensaude-Vincent B (2011) A cultural perspective on biomimetics. In: George A (ed) Advances in Biomimetics. InTech  

    Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  PubMed  Google Scholar 

  • Binyamin G, Shafi BM, Mery CM (2006) Biomaterials: a primer for surgeons. In: Seminars in pediatric surgery, vol 4. Elsevier, pp 276–283

    Google Scholar 

  • Bogue R (2009) Inspired by nature: developments in biomimetic sensors. Sens Rev 29(2):107–111

    Article  Google Scholar 

  • Bohner M (2010) Design of ceramic-based cements and putties for bone graft substitution. Eur Cells Mater 20(1):3–10

    Google Scholar 

  • BomBač D, Brojan M, Fajfar P, Kosel F, Turk R (2007) Review of materials in medical applications Pregled Materialov V Medicinskih Aplikacijah. RMZ Mater Geoenviron 54(4):471–499

    Google Scholar 

  • Buhleier E, Wehner W, Vögtle F (1978) “Cascade”- and “Nonskid-Chain-Like” syntheses of molecular cavity topologies. Chemischer Informationsdienst 9(25):155–158

    Article  Google Scholar 

  • Burdon-Sanderson JS (1882) On the electromotive properties of the leaf of Dionæa in the excited and unexcited states. Philos Trans R Soc Lond 173:1–55

    Google Scholar 

  • Carmona-Ribeiro AM (2010) Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int J Nanomed 5:249

    Article  Google Scholar 

  • Chandrawati R, Caruso F (2012) Biomimetic liposome-and polymersome-based multicompartmentalized assemblies. Langmuir 28(39):13798–13807

    Article  PubMed  Google Scholar 

  • Cheng Y, Wang J, Rao T, He X, Xu T (2008) Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 13(4):1447–1471

    Article  PubMed  Google Scholar 

  • Chiu I, Shu LH (2007) Biomimetic design through natural language analysis to facilitate cross-domain information retrieval. Artif Intell Eng Des Anal Manuf 21(1):45–59

    Google Scholar 

  • Choi SW, Kim WS, Kim JH (2003) Surface modification of functional nanoparticles for controlled drug delivery. J Dispersion Sci Technol 24(3–4):475–487

    Article  Google Scholar 

  • Cohen YH, Reich Y (2016) Biomimetic design method for innovation and sustainability, vol 10. Springer, Berlin

    Google Scholar 

  • Cordon C, Piva M, Melo C, Pinhal M, Suarez E (2013) Nanoparticles as platforms of molecular delivery in diagnosis and therapy. OA Cancer 1:15–21

    Article  Google Scholar 

  • Davis J (2003) Overview of biomaterials and their use in medical devices. In: Handbook of materials for medical devices, pp 1–11

    Google Scholar 

  • DeHaan RL (2005) The impending revolution in undergraduate science education. J Sci Educ Technol 14(2):253–269

    Article  Google Scholar 

  • De Witte T-M, Fratila-Apachitei LE, Zadpoor AA, Peppas NA (2018) Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomater 5(4):197–211

    Article  Google Scholar 

  • Dicks H (2016) The philosophy of biomimicry. Philos Technol 29(3):223–243

    Article  Google Scholar 

  • Dowson D (1992) Friction and wear of medical implants and prosthetic devices. Friction Lubr Wear Technol 18:656–664

    Google Scholar 

  • Drotleff S, Lungwitz U, Breunig M, Dennis A, Blunk T, Teßmar J, Göpferich A (2004) Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm 58(2):385–407

    Article  PubMed  Google Scholar 

  • Dubok VA (2000) Bioceramics-yesterday, today, tomorrow. Powder Metall Met Ceram 39(7–8):381–394

    Article  Google Scholar 

  • French M (1994) Invention and evolution. In: Design in nature and engineering, 2nd edn. Cambridge Press, Cambridge

    Google Scholar 

  • Garg T, Singh O, Arora S, Murthy R (2011) Dendrimer—a novel scaffold for drug delivery. Int J Pharm Sci Rev Res 7(2):211–220

    Google Scholar 

  • Goel AK, Stroulia E (2009) Functional device models and model-based diagnosis in adaptive design. Artif Intell Eng Des Anal Manuf 10(4):355–370

    Article  Google Scholar 

  • Goel AK, Rugaber S, Vattam S (2008) Structure, behavior, and function of complex systems: the structure, behavior, and function modeling language. Artif Intell Eng Des Anal Manuf 23(1):23–35

    Article  Google Scholar 

  • Gong Y-k, Winnik FM (2012) Strategies in biomimetic surface engineering of nanoparticles for biomedical applications. Nanoscale 4(2):360–368

    Article  PubMed  Google Scholar 

  • Gruber P (2011) Biomimetics in architecture: architecture of life and buildings. Springer, Vienna, New York

    Book  Google Scholar 

  • Handelsman J, Ebert-May D, Beichner R, Bruns P, Chang A, DeHaan R, Gentile J, Lauffer S, Stewart J, Tilghman SM, Wood WB (2004) Education. Scientific teaching. Science 304(5670):521–522

    Article  PubMed  Google Scholar 

  • Hanker JS, Giammara BL (1988) Biomaterials and biomedical devices. Science 242(4880):885–892

    Article  PubMed  Google Scholar 

  • Hatakeyama H, Akita H, Harashima H (2013) The polyethyleneglycol dilemma: advantage and disadvantage of pegylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 36(6):892–899

    Article  PubMed  Google Scholar 

  • Heini P, Berlemann U (2001) Bone substitutes in vertebroplasty. Eur Spine J 10(2):S205–S213

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodick D, Sievers A (1989) On the mechanism of trap closure of venus flytrap (Dionaea Muscipula Ellis). Planta 179(1):32–42

    Article  PubMed  Google Scholar 

  • Hwang J, Jeong Y, Park JM, Lee KH, Hong JW, Choi J (2015) Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomed 10:5701–5713

    Google Scholar 

  • Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283

    Article  PubMed  Google Scholar 

  • Jang YL, Yun UJ, Lee MS, Kim MG, Son S, Lee K, Chae SY, Lim DW, Kim HT, Kim SH (2012) Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and sirna for enhanced tumor growth suppression. Int J Pharm 434(1–2):488–493

    Article  PubMed  Google Scholar 

  • Jelinek R (2013) Biomimetics: a molecular perspective. Walter de Gruyter

    Google Scholar 

  • Johnson E, Bonser R, Jeronimidis G (2009) Recent advances in biomimetic sensing technologies. Philos Trans Royal Soc Math Phys Eng Sci 367(1893):1559–1569

    Google Scholar 

  • Kalyanasundaram K, Graetzel M (2010) Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Curr Opin Biotechnol 21(3):298–310

    Article  PubMed  Google Scholar 

  • Kato N, Kamimura S (2008) Bio-mechanisms of swimming and flying: fluid dynamics, biomimetic robots, and sports science. Springer Science & Business Media

    Google Scholar 

  • Khan W, Muntimadugu E, Jaffe M, Domb AJ (2014) Implantable medical devices. In: Focal controlled drug delivery. Springer, Berlin, pp 33–59

    Google Scholar 

  • Kimura S (2008) Molecular assemblies as biomimetic systems and their applications. Macromol Biosci 8(11):979–980

    Article  PubMed  Google Scholar 

  • Kulinets I (2015) Biomaterials and their applications in medicine. In: Regulatory affairs for biomaterials and medical devices. Elsevier, pp 1–10

    Google Scholar 

  • Kumar SS (2007) Biopolymers in medical applications. Tech Text, pp 1–15

    Google Scholar 

  • Kuroda D, Kawasaki H, Hiromoto S, Hanawa T (2005) Annual Book of ASTM Standards, Section 13, Medical Devices and Services, 2000. Mater Trans 46(7):1532–1539

    Google Scholar 

  • Langer K, Kohn J (1996) Bioresorbable and bioerodible materials. In: Biomaterials Science. Academic Press, New York, pp 64–72

    Google Scholar 

  • Lee JJ, Worthington P (1999) Reconstruction of the temporomandibular joint using calvarial bone after a failed teflon-proplast implant. J Oral Maxillofac Surg 57(4):457–461

    Article  PubMed  Google Scholar 

  • Lima AC, Custódio CA, Alvarez-Lorenzo C, Mano JF (2013) Biomimetic methodology to produce polymeric multilayered particles for biotechnological and biomedical applications. Small 9(15):2487–2492

    Article  PubMed  Google Scholar 

  • Liu XY (2012) Bioinspiration: from nano to micro scales. Springer, Berlin

    Google Scholar 

  • Lourenco M, Ferreira M, Branco S (2012) Molecules of natural origin, semi-synthesis and synthesis with anti-inflammatory and anticancer utilities. Curr Pharm Des 18(26):3979–4046

    Article  PubMed  Google Scholar 

  • Mano JF (2013) Biomimetic approaches for biomaterials development. Wiley-VCH

    Google Scholar 

  • Marom A, Marom G (2016) The biomimetic process in artistic creation. In: Bar-Cohen Y (ed) Biomimetics: nature- based innovation. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Meyer RA, Sunshine JC, Green JJ (2015) Biomimetic particles as therapeutics. Trends Biotechnol 33(9):514–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Nayak B, Dey R (2016) Pegylation in anti-cancer therapy: an overview. Asian J Pharm Sci 11(3):337–348

    Article  Google Scholar 

  • Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136

    Article  PubMed  Google Scholar 

  • Moosavi-Movahedi F (2017) Perspective on golden ratio (Φ). Sci Cultivation 7:39–52

    Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  PubMed  Google Scholar 

  • Nosonovsky M, Rohatgi PK (2011) Biomimetics in materials science: self-healing, self-lubricating, and self-cleaning materials, vol 152. Springer Science & Business Media

    Google Scholar 

  • Palincsar AS (1998) Social constructivist perspectives on teaching and learning. Annu Rev Psychol 49:345–375

    Article  PubMed  Google Scholar 

  • Parida P, Behera A, Mishra S (2012) Classification of biomaterials used in medicine. Int J Adv Appl Sci 1:31-35

    Google Scholar 

  • Peppas NA (2004) Intelligent therapeutics: biomimetic systems and nanotechnology in drug delivery. Adv Drug Deliv Rev 56(11):1529

    Article  PubMed  Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169

    Article  PubMed  Google Scholar 

  • Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Article  PubMed  Google Scholar 

  • Rodrigues L, Mota M (2016) Bioinspired materials for medical applications. Woodhead Publishing

    Google Scholar 

  • Ruys AJ (2013) Biomimetic biomaterials: structure and applications. Elsevier

    Google Scholar 

  • Sáenz A, Rivera E, Brostow W, Castaño VM (1999) Ceramic biomaterials: an introductory overview. J Mater Educ 21(5/6):267–276

    Google Scholar 

  • Schmalz G, Arenholt-Bindslev D (2009) Biocompatibility of dental materials, vol 1. Springer

    Google Scholar 

  • Sheikhpour M, Barani L, Kasaeian A (2017) Biomimetics in drug delivery systems: a critical review. J Control Release 253:97–109

    Article  PubMed  Google Scholar 

  • Singh RA, Yoon E-S, Jackson RL (2009) Biomimetics: the science of imitating nature. Tribol Lubr Technol 65(2):40–47

    Google Scholar 

  • Siraparapu YD, Bassa S, Sanasi PD (2013) A review on recent applications of biomaterials. Int J Sci Res 1:70–75

    Google Scholar 

  • Stroble JK, Stone RB, Watkins SE (2009) An overview of biomimetic sensor technology. Sens Rev 29(2):112–119

    Article  Google Scholar 

  • Sumita M, Hanawa T, Teoh S (2004) Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials. Mater Sci Eng, C 24(6–8):753–760

    Article  Google Scholar 

  • Toko K (2000) Biomimetic sensor technology. Cambridge University Press

    Book  Google Scholar 

  • Vaccaro AR, Madigan L (2002) Spinal applications of bioabsorbable implants. Orthopedics 25(10):S1115–S1120

    PubMed  Google Scholar 

  • Vauthier C, Labarre D (2008) Modular biomimetic drug delivery systems. J Drug Delivery Sci Technol 18(1):59–68

    Article  Google Scholar 

  • Venkatesh S, Byrne ME, Peppas NA, Hilt JZ (2005) Applications of biomimetic systems in drug delivery. Expert Opin Drug Delivery 2(6):1085–1096

    Article  Google Scholar 

  • Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (Iupac Recommendations 2012). Pure Appl Chem 84(2):377–410

    Google Scholar 

  • Vincent JF (2003) Biomimetic modelling. Philos Trans R Soc Lond B Biol Sci 358(1437):1597–1603

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent JF, Mann DL (2002) Systematic technology transfer from biology to engineering. Philos Trans Ser A Math Phys Eng Sci 360(1791):159–173

    Article  Google Scholar 

  • Vincent JF, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl AK (2006) Biomimetics: its practice and theory. J R Soc Interface 3(9):471–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel S (1998) Cats’ paws and catapults: mechanical worlds of nature and people. W. W. Norton & Company

    Google Scholar 

  • Von Recum AF, Laberge M (1995) Educational goals for biomaterials science and engineering: prospective view. J Appl Biomater 6(2):137–144

    Article  Google Scholar 

  • Whelan J (2002) Smart bandages diagnose wound infection. Drug Discov Today 7(1):9–10

    Google Scholar 

  • Whitesides GM (2015) Bioinspiration: something for everyone. Interface Focus 5(4):20150031–20150041

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright KA, Nadire KB, Busto P, Tubo R, McPherson JM, Wentworth BM (1998) Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury. Burns 24(1):7–17

    Article  PubMed  Google Scholar 

  • Yen J, Weissburg MJ, Helms M, Goel AK (2016) Biologically inspired design: a tool for interdisciplinary education. In: Bar-Cohen Y (ed) Biomimetics: nature-based innovation. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This investigation is supported by Iran National Science Foundation (INSF) and the Institute of Biochemistry and Biophysics (IBB) University of Tehran. Chemistry & Chemical Engineering Research Center of Iran (CCERCI) and Kharazmi University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sedigheh Abedanzadeh or Zainab Moosavi-Movahedi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abedanzadeh, S., Nourisefat, M., Moosavi-Movahedi, Z. (2021). Bioinspiration and Biomimicry in Lifestyle. In: Rationality and Scientific Lifestyle for Health. University of Tehran Science and Humanities Series. Springer, Cham. https://doi.org/10.1007/978-3-030-74326-0_2

Download citation

Publish with us

Policies and ethics