Skip to main content

Advances and Innovations in Reconstruction of the Maxilla and Midface Utilizing Computer-Assisted Surgery: Technology, Principal Consideration, and Clinical Implementation

  • Chapter
  • First Online:
Innovations and New Developments in Craniomaxillofacial Reconstruction
  • 587 Accesses

Abstract

The restoration of form, function and aesthetics of the maxilla and midface together with its surrounding soft tissues of congenital (e.g. craniosynostosis) or acquired defects (e.g. after trauma or tumor resection) remains one of the greatest surgical challenges due to its complex three-dimensional anatomy and surrounding vital structures. The implementation of computer-aided design/computer-aided manufacturing (CAD/CAM) technology and the use of patient-specific implants (PSIs) has heralded a new era in craniomaxillofacial reconstruction and its benefits have been extensively documented in the last decade. After processing pre-operative CT-scan data into CAD/CAM software, the surgeon is able to virtually plan osteotomies and the reconstruction of large and geometrically complex anatomical defects, which leads to a more precise surgical procedure and predictable results. Computer-assisted surgery (CAS) and intraoperative navigation further permit constant control of the reconstruction steps so that incorrect positioning of CAD/CAM fabricated customized surgical guides, patient-specific osteosynthesis plates and implants can be prevented. This leads to a significantly lower rate of complications and revision surgery and reduced operation time as compared to traditional methods. In this chapter, we will present various clinical scenarios resulting in the need for midfacial reconstruction where virtual surgical planning (VSP) in conjunction with CAD/CAM technology and patient-specific implants (PSIs) resulted in superior clinical outcomes. Furthermore, we give an insight into future developments with new technologies like virtual, augmented, and mixed reality finding their way into the operation theatre and the clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Futran ND, Mendez E. Developments in reconstruction of midface and maxilla. Lancet Oncol. 2006;7(3):249–58.

    Article  PubMed  Google Scholar 

  2. Brown JS, Shaw RJ. Reconstruction of the maxilla and midface: introducing a new classification. Lancet Oncol. 2010;11(10):1001–8.

    Article  PubMed  Google Scholar 

  3. Phasuk K, Haug SP. Maxillofacial prosthetics. Oral Maxillofac Surg Clin North Am. 2018;30(4):487–97.

    Article  PubMed  Google Scholar 

  4. O’Connell DA, Futran ND. Reconstruction of the midface and maxilla. Curr Opin Otolaryngol Head Neck Surg. 2010;18(4):304–10.

    Article  PubMed  Google Scholar 

  5. Dalgorf D, Higgins K. Reconstruction of the midface and maxilla. Curr Opin Otolaryngol Head Neck Surg. 2008;16(4):303–11.

    Article  PubMed  Google Scholar 

  6. Costa H, Zenha H, Sequeira H, et al. Microsurgical reconstruction of the maxilla: algorithm and concepts. J Plast Reconstr Aesthet Surg. 2015;68(5):e89–e104.

    Article  PubMed  Google Scholar 

  7. McCarthy CM, Cordeiro PG. Microvascular reconstruction of oncologic defects of the midface. Plast Reconstr Surg. 2010;126(6):1947–59.

    Article  CAS  PubMed  Google Scholar 

  8. Rana M, Essig H, Eckardt AM, et al. Advances and innovations in computer-assisted head and neck oncologic surgery. J Craniofac Surg. 2012;23(1):272–8.

    Article  PubMed  Google Scholar 

  9. Wang Y, Fan S, Zhang H, Lin Z, Ye J, Li J. Virtual surgical planning in precise maxillary reconstruction with vascularized fibular graft after tumor ablation. J Oral Maxillofac Surg. 2016;74(6):1255–64.

    Article  PubMed  Google Scholar 

  10. Zhang WB, Yu Y, Wang Y, et al. [Surgical reconstruction of maxillary defects using a computer-assisted techniques]. Beijing Da Xue Xue Bao. 2017;49(1):1–5.

    Google Scholar 

  11. Numajiri T, Morita D, Nakamura H, et al. Using an in-house approach to computer-assisted design and computer-aided manufacturing reconstruction of the maxilla. J Oral Maxillofac Surg. 2018;76(6):1361–9.

    Article  PubMed  Google Scholar 

  12. Rana M, Modrow D, Keuchel J, et al. Development and evaluation of an automatic tumor segmentation tool: a comparison between automatic, semi-automatic and manual segmentation of mandibular odontogenic cysts and tumors. J Cranio Maxillofacial Surg. 2015;43(3):355–9.

    Article  Google Scholar 

  13. Essig H, Dressel L, Rana M, et al. Precision of posttraumatic primary orbital reconstruction using individually bent titanium mesh with and without navigation: a retrospective study. Head Face Med. 2013;9(1):1–7.

    Article  Google Scholar 

  14. Yu H, Zhang S, Wang X, Lin Y, Wang C, Shen G. [Application of computer-assisted navigation in oral and maxillofacial surgery: retrospective analysis of 104 consecutive cases]. Shanghai Kou Qiang Yi Xue. 2012;21(4):416–21.

    Google Scholar 

  15. Essig H, Rana M, Kokemueller H, et al. Pre-operative planning for mandibular reconstruction—a full digital planning workflow resulting in a patient specific reconstruction. Head Neck Oncol. 2011;3:45.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ayoub A, Pulijala Y. The application of virtual reality and augmented reality in oral & maxillofacial surgery. BMC Oral Health. 2019;19(1):238.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pandrangi VC, Gaston B, Appelbaum NP, Albuquerque FC, Levy MM, Larson RA. The application of virtual reality in patient education. Ann Vasc Surg. 2019;59:184–9.

    Article  PubMed  Google Scholar 

  18. Sonmez N, Gultekin P, Turp V, Akgungor G, Sen D, Mijiritsky E. Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: a comparative in vitro study. BMC Oral Health. 2018;18(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wagner M, Gander T, Blumer M, et al. [CAD/CAM revolution in craniofacial reconstruction]. Praxis (Bern 1994). 2019;108(5):321–8.

    Google Scholar 

  20. Bell RB, Markiewicz MR. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg. 2009;67(12):2559–70.

    Article  PubMed  Google Scholar 

  21. Wilde F, Hanken H, Probst F, Schramm A, Heiland M, Cornelius C-P. Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. Int J Comput Assist Radiol Surg. 2015;10(12):2035–51.

    Article  PubMed  Google Scholar 

  22. Cornelius C-P, Giessler GA, Wilde F, Metzger MC, Mast G, Probst FA. Iterations of computer- and template assisted mandibular or maxillary reconstruction with free flaps containing the lateral scapular border—evolution of a biplanar plug-on cutting guide. J Cranio Maxillofacial Surg. 2016;44(3):229–41.

    Article  Google Scholar 

  23. Mascha F, Winter K, Pietzka S, Heufelder M, Schramm A, Wilde F. Accuracy of computer-assisted mandibular reconstructions using patient-specific implants in combination with CAD/CAM fabricated transfer keys. J Cranio Maxillofacial Surg. 2017;45(11):1884–97.

    Article  Google Scholar 

  24. Wilde F, Cornelius C-P, Schramm A. Computer-assisted mandibular reconstruction using a patient-specific reconstruction plate fabricated with computer-aided design and manufacturing techniques. Craniomaxillofac Trauma Reconstr. 2014;7(2):158–66.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lenox ND, Kim DD. Maxillary reconstruction. Oral Maxillofac Surg Clin North Am. 2013;25(2):215–22.

    Article  PubMed  Google Scholar 

  26. Wilkman T, Husso A, Lassus P. Clinical comparison of scapular, fibular, and iliac crest osseal free flaps in maxillofacial reconstructions. Scand J Surg. 2019;108(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Zhang L-M, Ren W-H, et al. [Optimal design by customized plate on reconstruction of maxillary unilateral defect via free fibula flap]. Shanghai Kou Qiang Yi Xue. 2018;27(5):455–460.

    Google Scholar 

  28. Fu K, Liu Y, Gao N, Cai J, He W, Qiu W. Reconstruction of maxillary and orbital floor defect with free fibula flap and whole individualized titanium mesh assisted by computer techniques. J Oral Maxillofac Surg. 2017;75(8):1791.e1–9.

    Article  Google Scholar 

  29. Zhang WB, Wang Y, Liu XJ, et al. Reconstruction of maxillary defects with free fibula flap assisted by computer techniques. J Craniomaxillofac Surg. 2015;43(5):630–6.

    Article  CAS  PubMed  Google Scholar 

  30. Patel A, Harrison P, Cheng A, Bray B, Bell RB. Fibular reconstruction of the maxilla and mandible with immediate implant-supported prosthetic rehabilitation: jaw in a day. Oral Maxillofac Surg Clin North Am. 2019;31(3):369–86.

    Article  PubMed  Google Scholar 

  31. Osborn TM, Helal D, Mehra P. Iliac crest bone grafting for mandibular reconstruction: 10-year experience outcomes. J Oral Biol Craniofacial Res. 2018;8(1):25–9.

    Article  Google Scholar 

  32. Bianchi B, Ferri A, Ferrari S, Copelli C, Boni P, Sesenna E. Iliac crest free flap for maxillary reconstruction. J Oral Maxillofac Surg. 2010;68(11):2706–13.

    Article  PubMed  Google Scholar 

  33. Kelly CP, Moreira-Gonzalez A, Ali MA, et al. Vascular iliac crest with inner table of the ilium as an option in maxillary reconstruction. J Craniofac Surg. 2004;15(1):23–8.

    Article  PubMed  Google Scholar 

  34. Wu Y, Li D, Wang X, Xu Z. [Application of scapula osteomyocutaneous flap in the repair of maxillary defect]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2015;50(10):814–7.

    Google Scholar 

  35. Tang AL, Bearelly S, Mannion K. The expanding role of scapular free-flaps. Curr Opin Otolaryngol Head Neck Surg. 2017;25(5):411–5.

    Article  PubMed  Google Scholar 

  36. Heiland M, Habermann CR, Schmelzle R. Indications and limitations of intraoperative navigation in maxillofacial surgery. J Oral Maxillofac Surg. 2004;62(9):1059–63.

    Article  PubMed  Google Scholar 

  37. Mischkowski RA, Zinser MJ, Ritter L, Neugebauer J, Keeve E, Zöller JE. Intraoperative navigation in the maxillofacial area based on 3D imaging obtained by a cone-beam device. Int J Oral Maxillofac Surg. 2007;36(8):687–94.

    Article  CAS  PubMed  Google Scholar 

  38. Schramm A, Suarez-Cunqueiro MM, Barth EL, et al. Computer-assisted navigation in craniomaxillofacial tumors. J Craniofac Surg. 2008;19(4):1067–74.

    Article  PubMed  Google Scholar 

  39. Scolozzi P, Schouman T. [Interventional multidimodal hybrid unit: from pre-operative planning to immediate post-operative control]. Rev Stomatol Chir Maxillofac. 2012;113(2):115–23.

    Google Scholar 

  40. Bartella AK, Kamal M, Scholl I, et al. Virtual reality in preoperative imaging in maxillofacial surgery: implementation of “the next level”? Br J Oral Maxillofac Surg. 2019;57(7):644–8.

    Article  CAS  PubMed  Google Scholar 

  41. Towers A, Field J, Stokes C, Maddock S, Martin N. A scoping review of the use and application of virtual reality in pre-clinical dental education. Br Dent J. 2019;226(5):358–66.

    Article  PubMed  Google Scholar 

  42. Weiner CK, Skålén M, Harju-Jeanty D, et al. implementation of a web-based patient simulation program to teach dental students in oral surgery. J Dent Educ. 2016;80(2):133–40.

    Article  PubMed  Google Scholar 

  43. Ayoub AF, Xiao Y, Khambay B, Siebert JP, Hadley D. Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning. Int J Oral Maxillofac Surg. 2007;36(5):423–8.

    Article  CAS  PubMed  Google Scholar 

  44. Naudi KB, Benramadan R, Brocklebank L, Ju X, Khambay B, Ayoub A. The virtual human face: superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT scan. Int J Oral Maxillofac Surg. 2013;42(3):393–400.

    Article  CAS  PubMed  Google Scholar 

  45. de Waard O, Baan F, Verhamme L, Breuning H, Kuijpers-Jagtman AM, Maal T. A novel method for fusion of intra-oral scans and cone-beam computed tomography scans for orthognathic surgery planning. J Craniomaxillofac Surg. 2016;44(2):160–6.

    Article  PubMed  Google Scholar 

  46. Wu F, Chen X, Lin Y, et al. A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench. Int J Med Robot. 2014;10(1):78–87.

    Article  PubMed  Google Scholar 

  47. Khelemsky R, Hill B, Buchbinder D. Validation of a novel cognitive simulator for orbital floor reconstruction. J Oral Maxillofac Surg. 2017;75(4):775–85.

    Article  PubMed  Google Scholar 

  48. Pohlenz P, Gröbe A, Petersik A, et al. Virtual dental surgery as a new educational tool in dental school. J Craniomaxillofac Surg. 2010;38(8):560–4.

    Article  PubMed  Google Scholar 

  49. Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. Effectiveness of immersive virtual reality in surgical training—a randomized control trial. J Oral Maxillofac Surg. 2018;76(5):1065–72.

    Article  PubMed  Google Scholar 

  50. Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg. 2017;44(3):179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhu M, Liu F, Chai G, et al. A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery. Sci Rep. 2017;7:42365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kwon H-B, Park Y-S, Han J-S. Augmented reality in dentistry: a current perspective. Acta Odontol Scand. 2018;76(7):497–503.

    Article  PubMed  Google Scholar 

  53. Holzinger D, Juergens P, Shahim K, et al. Accuracy of soft tissue prediction in surgery-first treatment concept in orthognathic surgery: a prospective study. J Craniomaxillofac Surg. 2018;46(9):1455–60.

    Article  PubMed  Google Scholar 

  54. Pellegrino G, Mangano C, Mangano R, Ferri A, Taraschi V, Marchetti C. Augmented reality for dental implantology: a pilot clinical report of two cases. BMC Oral Health. 2019;19(1):158.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majeed Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rana, M., Wilkat, M. (2021). Advances and Innovations in Reconstruction of the Maxilla and Midface Utilizing Computer-Assisted Surgery: Technology, Principal Consideration, and Clinical Implementation. In: Acero, J. (eds) Innovations and New Developments in Craniomaxillofacial Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-030-74322-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74322-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74321-5

  • Online ISBN: 978-3-030-74322-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics