Skip to main content

Some Recent Advances in Nonlinear Aeroelasticity

  • Chapter
  • First Online:
A Modern Course in Aeroelasticity

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 264))

  • 1742 Accesses

Abstract

This brings the discussion of nonlinear aeroelasticity up to date. See the earlier discussion in Chap. 11. Much of the recent advances are based on new understanding of such subjects as limit cycle oscillations due to structural non-linearities, including freeplay, and fluid nonlinearities associated with unsteady separated flow including self excited flow oscillations variously called buffet or non-synchronous vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter is based upo a AIAA SDM lecture given in 2010.

  2. 2.

    This section is an abbreviated and revised version of [1]

References

  1. Dowell EH, Edwards JW, Strganac TW (2003) Nonlinear aeroelasticity. J Aircr 40(5):857–874

    Article  Google Scholar 

  2. Dowell EH, Tang DM (2002) Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J 40(9):1697–1707

    Article  Google Scholar 

  3. Dowell EH, Hall KC (2001) Modeling of fluid-structure interaction. Annu Rev Fluid Mech 33:445–490

    Article  MATH  Google Scholar 

  4. Lucia DJ, Beran PS, Silva WA (2004) Reduced-order modeling: new approaches for computational physics. Prog Aerosp Sci 40(1–2):51–117

    Article  Google Scholar 

  5. Dowell EH, Clark R, Cox D, Curtiss HC Jr, Edwards JW, Hall KC, Peters DA, Scanlan R, Simiu E, Sisto F, Strganac TW (2004) A modern course in aeroelasticity, 4th edn. Kluwer Academic, Boston

    Google Scholar 

  6. Dowell EH, Tang DM (2003) Dynamics of very high dimensional systems. World Scientific, Singapore (See especially Chaps. 4, 13 and 14)

    Google Scholar 

  7. Hashimoto A, Aoyama T, Nakamura Y (2009) Effects of turbulent boundary layer on panel flutter. AIAA J 47(12):2785–2791

    Article  Google Scholar 

  8. Dowell EH (1973) Aerodynamic boundary layer effects on flutter and damping of plates. J Aircr 10(12):734–738

    Article  Google Scholar 

  9. Muhlstein L, Gaspers P, Riddle D (1968) An experimental study of the influence of the turbulent boundary layer on panel flutter. NASA TN D4486

    Google Scholar 

  10. Dugundji J, Dowell E, Perkin B (1963) Subsonic flutter of panels on a continuous elastic foundation. AIAA J 1(5):1146–1154

    Article  Google Scholar 

  11. Dowell EH (1975) Aeroelasticity of plates and shells. Kluwer Academic Publishers, Dordrecht (See Appendix II)

    Google Scholar 

  12. Tang DM, Yamamoto H, Dowell EH (2003) Flutter and limit cycle oscillations of twodimensional panels in a three- dimensional axial flow. J Fluids Struct 17:225–242

    Article  Google Scholar 

  13. Tang L, Paidoussis M, Jiang J (2009) Cantilevered flexible plates in axial flow: energy transfer and the concept of a Flutter-Mill. J Sound Vib 326:263–276

    Article  Google Scholar 

  14. Hoffman NR (1955) Subsonic flutter model tests of an all-movable stabilizer with 35 degree sweepback. WADC Tech Note 55-623

    Google Scholar 

  15. Tang D, Dowell EH, Virgin LN (1998) Limit cycle behavior of an airfoil with a control surface. J Fluids Struct 12(7):839–858

    Article  Google Scholar 

  16. Tang D, Dowell EH (2010) Aeroelastic airfoil with freeplay at angle of attack with gust excitation. AIAA J 48(2):427–442

    Article  Google Scholar 

  17. Lee D, Chen P, Tang D, Dowell E (2010) Nonlinear gust response of a control surface with freeplay. AIAA 2010-3116, presented at the 51st AIAA SDM conference, Orlando

    Google Scholar 

  18. Schlomach C (2009) All-moveable control surface freeplay. NASA Langley Research Center, Hampton (Presentation to the Aerospace Flutter and Dynamics Council)

    Google Scholar 

  19. Lieu T, Farhat C, Lesoinne A (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43):5730–5742

    Article  MATH  Google Scholar 

  20. Lieu T, Farhat C (2007) Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J 45(6):1244–1257

    Article  Google Scholar 

  21. Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813

    Article  Google Scholar 

  22. Romanowski MC (1996) Reduced order unsteady aerodynamic and aeroelastic models using kahunen-loeve eigenmodes [pod modes], AIAA paper 96-3981, presented at the AIAA/NASA/ISSMO symposium on multidisciplinary analysis and optimization. Bellevue, Washington

    Google Scholar 

  23. Hall KC, Thomas JP, Dowell EH (2000) Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J 38(10):1853–1862

    Article  Google Scholar 

  24. Thomas JP, Dowell EH, Hall KC (2003) Three-dimensional aeroelasticity using proper orthogonal decomposition based reduced order models. J Aircr 40(3):544–551

    Article  Google Scholar 

  25. Dowell EH, Thomas JP, Hall KC (2004) Transonic limit cycle oscillation analysis using reduced order models. J Fluids Struct 19(1):17–27

    Article  Google Scholar 

  26. Beran PS, Lucia DJ (2004) Reduced-order modeling of limit-cycle oscillation for aeroelastic systems. J Fluids Struct 19(5):575–590

    Article  Google Scholar 

  27. Lucia DJ, Beran PS (2004) Reduced-order model development using proper orthogonal decomposition and Volterra theory. AIAA J 42(6):1181–1190

    Article  Google Scholar 

  28. Mortara SA, Slater J, Beran P (2004) Analysis of nonlinear aeroelastic panel response using proper orthogonal decomposition. J Vib Acoust 126(3):416–421

    Article  Google Scholar 

  29. Anttonen JSR, King PI, Beran PS (2005) Applications of multi-POD to a pitching and plunging airfoil. Math Comput Model 42(3–4):245–259

    Article  MathSciNet  MATH  Google Scholar 

  30. McMullen M, Jameson A (2006) The computational efficiency of non-linear frequency domain methods. J Comput Phys 212(2):637–661

    Article  MATH  Google Scholar 

  31. McMullen M, Jameson A, Alonzo J (2006) Demonstration of nonlinear frequency domain methods. AIAA J 44(7):1428–1435

    Article  Google Scholar 

  32. Timme S, Badcock K (2009) Implicit harmonic balance solver for transonic flow with forced motions. AIAA J 47(4):893–901

    Article  Google Scholar 

  33. Hall KC, Thomas JP, Clark WS (2002) Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J 40(5):879–886

    Article  Google Scholar 

  34. Thomas JP, Dowell EH, Hall KC (2004) Modeling viscous transonic limit cycle oscillations behavior using a harmonic balance approach. J Aircr 41(6):1266–1274

    Article  Google Scholar 

  35. Beran PS, Lucia DJ (2005) A reduced order cyclic method for computation of limit cycles. Nonlinear Dyn 39(1–2):143–158

    Article  MATH  Google Scholar 

  36. Liu L, Thomas JP, Dowell EH, Attar PJ, Hall KC (2006) A comparison of classical and high dimensional harmonic balance approaches for a duffing oscillator. J Comput Phys 215(1):298–320

    Article  MathSciNet  MATH  Google Scholar 

  37. Dowell EH, Hall KC, Thomas JP, Kielb RE, Spiker MA, Denegri Jr CM (2007) A new solution method for unsteady flows around oscillating bluff bodies. In: Proceedings of the IUTAM symposium on fluid-structure interaction in ocean engineering, Springer

    Google Scholar 

  38. Custer CH, Thomas JP, Dowell EH, Hall KC (2009) A nonlinear harmonic balance method for the CFD code OVERFLOW 2. In: International forum on aeroelasticity and structural dynamics, Seattle, paper 2009-050

    Google Scholar 

  39. Thomas JP, Custer CH, Dowell EH, Hall KC (2009) Unsteady flow computations using a harmonic balance approach implemented about the OVERFLOW 2 flow solver. In: 19th AIAA computational fluid dynamics conference, San Antonio, paper 2009-4270

    Google Scholar 

  40. Thomas JP, Dowell EH, Hall KC (2010) Using automatic differentiation to create nonlinear reduced order model aerodynamic solver. AIAA J 48(1):19–24

    Article  Google Scholar 

  41. Thompson JMT, Stewart HB (1988) Nonlinear dynamics and chaos. Wiley, New York

    Google Scholar 

  42. Denegri CM Jr (1997) Correlation of classical flutter analyses and nonlinear flutter responses characteristics. In: International forum on aeroelasticity and structural dynamics, Rome, pp 141-148

    Google Scholar 

  43. Denegri CM Jr, Cutchins MA (1997) Evaluation of classical flutter analysis for the prediction of limit cycle oscillations. AIAA paper 97-1021

    Google Scholar 

  44. Denegri CM Jr (2000) Limit cycle oscillation flight test results of a fighter with external stores. J Aircr 37(5):761–769

    Article  Google Scholar 

  45. Denegri CM Jr, Johnson MR (2001) Limit cycle oscillation prediction using artificial neural networks. J Guidance Control Dyn 24(5):887–895

    Article  Google Scholar 

  46. (1974) AGARD Specialists meeting on wings-with-stores flutter, 39th meeting of the structures and materials panel, AGARD conference proceedings no 162, Munich

    Google Scholar 

  47. Bunton RW, Denegri CM Jr (2000) Limit cycle oscillation characteristics of fighter aircraft. J Aircr 37(5):916–918

    Article  Google Scholar 

  48. Cunningham AM Jr (1999) A generic nonlinear aeroelastic method with semi-empirical nonlinear unsteady aerodynamics, vol 1 and 2, AFRL-VA-WP-R-1999-3014

    Google Scholar 

  49. Cunningham AM Jr (1998) The role of nonlinear aerodynamics in fluid-structure interactions, AIAA paper 98-2423

    Google Scholar 

  50. Cunningham AM Jr, Geurts EGM (1998) Analysis of limit cycle oscillation/transonic high alpha flow visualization, AFRL-vA-WP-TR-1998-3003, Part I

    Google Scholar 

  51. Dobbs SK, Miller GD, Stevenson JR (1985) Self induced oscillation wind tunnel test of a variable sweep wing, AIAA paper 85-0739-CP presented at 26th AIAA/ASME/ASCE/AHS structures, structural dynamics and materials conference, Orlando, pp 15–17

    Google Scholar 

  52. Hartwich pM, Dobbs SK, Arslan AE, Kim SC (2000) Navier-stokes computations of limit cycle oscillations for a B-1-like configuration, AIAA paper 2000-2338, AIAA Fluids 2000, Denver

    Google Scholar 

  53. Dreim DR, Jacobson SB, Britt RT (1999) Simulation of non-linear transonic aeroelastic behavior on the B-2, NASA CP-1999-209136. CEAS/AIAA/ICASE/NASA Langley international forum on aeroelasticity and structural, Dynamics, pp 511–521

    Google Scholar 

  54. Croft J (2001) Airbus elevator flutter: annoying or dangerous? Aviation week and space technology

    Google Scholar 

  55. Dowell EH (1975) Aeroelasticity of plates and shell. Kluwer Academic, Dordrecht

    Google Scholar 

  56. Dowell EH (1972) Panel flutter. NASA Special Publication, Washington (SP-8004)

    Google Scholar 

  57. Yurkovich RN, Liu DD, Chen PC (2001) The state-of-the-art of unsteady aerodynamics for high performance aircraft, AIAA paper 2001-0428, aerospace sciences conference

    Google Scholar 

  58. Bennett RM, Edwards JW (1998) An overview of recent developments in computational aeroelasticity, AIAA paper no. 98-2421, presented at the AIAA fluid dynamics conference, Albuquerque

    Google Scholar 

  59. Farhat C, Lesoinne M (1998) Enhanced partitioned procedures for solving nonlinear transient aeroelastic problems. AIAA Paper 98-1806

    Google Scholar 

  60. Raveh DE, Levy Y, KarpelM, (2001) Efficient aeroelastic analysis using computational unsteady aerodynamics. J Aircr 38(3):547–556

    Google Scholar 

  61. Thomas JP, Dowell EH, Hall KC (2001) Three-dimensional transonic aeroelasticity using proper orthogonal decomposition based reduced order models, AIAA Paper 2001-1526, presented at 42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference and exhibit, Seattle, pp 16-19

    Google Scholar 

  62. Gupta KK (1996) Development of a finite element aeroelastic analysis capability. J Aircr 33(5):995–1002

    Article  Google Scholar 

  63. Scott RC, Silva WA, Florance JR, Keller DF (2010) Measurement of unsteady pressure data on a large HSCT semi-span wing and comparison with analysis, AIAA, pp 2002–1648

    Google Scholar 

  64. Silva WA, Keller DF, Florance JR, Cole SR, Scott RC (2000) Experimental steady and unsteady aerodynamic and flutter results for HSCT semi-span models. In: 41st structures, structural dynamics and materials conference, AIAA, no 2000–1697

    Google Scholar 

  65. Bennett RM, Eckstrom CV, Rivera JA Jr, Danberry BE, Farmer MG, Durham MH (1991) The benchmark aeroelastic models program: description and highlights of initial results, NASA TM 104180

    Google Scholar 

  66. Bennett RM, Scott RC, Wieseman CD (2000) Computational test cases for the benchmark active controls model. J Guidance Control Dyn 23(5):922–929

    Article  Google Scholar 

  67. Kholodar DE, Dowell EH, Thomas JP, Hall KC (2004) Limit-Cycle oscillations of a typical airfoil in transonic flow. J Aircr 41(5):911-917 (AIAA)

    Google Scholar 

  68. Schwarz JB, Dowell EH, Thomas JP, Hall KC, Rausch RD, Bartels RE (2009) Improved flutter boundary prediction for an isolated two degree of freedom airfoil. J Aircr 46(6):2069–2076

    Article  Google Scholar 

  69. Thomas JP, Dowell EH, Hall KC (2009) Theoretical predictions of limit cycle oscillations for flight flutter testing of the f-16 fighter. J Aircr 46(5):1667–1672

    Article  Google Scholar 

  70. Dowell EH, Tang D (2002) Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J 40(9):1697–1707

    Article  Google Scholar 

  71. Gordnier RE, Melville RB (1999) Physical mechanisms for limit-cycle oscillations of a cropped delta wing. AIAA Paper, Norfolk

    Book  MATH  Google Scholar 

  72. Gordnier RE, Melville RB (2001) Numerical simulation of limit-cycle oscillations of a cropped delta wing using the full Navier-stokes equations. Int J Comput Fluid Dyn 14(3):211–224

    Article  MATH  Google Scholar 

  73. Schairer ET, Hand LA (1997) Measurement of unsteady aeroelastic model deformation by stereo photogrammetry, AIAA Paper 97-2217

    Google Scholar 

  74. Thomas JP, Dowell EH, Hall KC (2002) A harmonic balance approach for modeling threedimensional nonlinear unsteady aerodynamics and aeroelasticity, IMECE-2002-32532. Presented at the ASME international mechanical engineering conference and exposition, New Orleans, Louisiana

    Google Scholar 

  75. Edwards JW (1998) Calculated viscous and scale effects on transonic aeroelasticity, paper no.1 in Numerical unsteady aerodynamic and aeroelastic simulation. AGARD Report 822

    Google Scholar 

  76. Edwards JW, Schuster DM, Spain CV, Keller DF, Moses RW (2001) MAVRIC flutter model transonic limit cycle oscillation test, AIAA p 2001-1291

    Google Scholar 

  77. Edwards JW (1996) Transonic shock oscillations and wing flutter calculated with an interactive boundary layer coupling method, NASA TM-110284

    Google Scholar 

  78. Parker EC, Spain CV, Soistmann DL (1991) Aileron buzz investigated on several generic NASP wing configurations, AIAA Paper 91-0936

    Google Scholar 

  79. Pak C, Baker ML (2001) Control surface buzz analysis of a generic NASP wing, AIAA Paper 2001-1581

    Google Scholar 

  80. Huttsell L, Schuster D, Volk J, Giesing J, Love M (2001) Evaluation of computational aeroelasticity codes for loads and flutter, AIAA Paper 2001-569

    Google Scholar 

  81. Edwards JW (2008) Calculated viscous and scale effects on transonic aeroelasticity. J Aircr 45(6):1863–1871

    Article  Google Scholar 

  82. Barakos G, Drikakis D (2000) Numerical simulation of transonic buffet flows using various turbulence closures. Int J Heat Fluid Flow 21:620–626

    Article  Google Scholar 

  83. Raveh D (2009) A numerical study of an oscillating airfoil in transonic buffeting flows. AIAA J 47(3):505–515

    Article  Google Scholar 

  84. Raveh D, Dowell EH (2009) Aeroelastic response of airfoil in buffeting transonic flows. In: International forum on aeroelasticity and structural dynamics, Seattle, IFASD-2009-161

    Google Scholar 

  85. Raveh D, Dowell EH (2012) Frequency lock-in phenomenon for oscillating airfoils in buffeting flows. Accept Publ J Fluids Struct

    Google Scholar 

  86. McDevitt JB, Okuno AF (1985) Static and dynamic pressure measurements on a NACA 0012 airfoil in the AMES high Reynolds number facility, NASA TP 2485

    Google Scholar 

  87. Kielb R, Barter JT, Hall KC (2003) Blade excitation by aerodynamic instabilities-a compressor blade study, ASME GT-2003-38634, ASME Turbo Expo Conference

    Google Scholar 

  88. Sanders AJ (2005) Nonsynchronous vibration (NSV) due to a flow-induced aerodynamics instability in a composite fan stator. ASME

    Google Scholar 

  89. Spiker M (2008) Development of an efficient design methods for non-synchronous vibrations. Doctoral dissertation. Duke University

    Google Scholar 

  90. Clark S (2013) Design for coupled-mode flutter and non-synchronous vibration in turbomachinery. Doctoral dissertation. Duke University

    Google Scholar 

  91. Besem F (2015) Aeroelastic instabilities due to unsteady aerodynamics. Doctoral dissertation. Duke University

    Google Scholar 

  92. Besem F, Kamrass J, Thomas J, Tang D, Kielb R (2016) Vortex-induced vibration and frequency lock-in of an airfoil at high angles of attack. J Fluids Eng. ASME

    Google Scholar 

  93. Hollenbach, R, Kielb, R, Hall, K (2022) Extending a van der pol based reduced-order model for fluid-structure applied to non-synchronous vibrations in turbomachinery. J Turbomach. pp 1–14

    Google Scholar 

  94. Clark S, Kielb R, Hall K (2013) A Van Der Pol based reduced-order model for nonsynchronous vibration (NSV) in turbomachinery. ASME, Turbo Expo

    Google Scholar 

  95. Williams MH (1979) Linearization of unsteady transonic flows containing shocks. AIAA J 17(4):394–397

    Article  MATH  Google Scholar 

  96. Woodgate MA, Badcock KJ (2009) Implicit harmonic balance solver for transonic flow with forced motions. AIAA J 47(4):893–901

    Article  Google Scholar 

  97. Friedmann PO (2004) Rotary-wing aeroelasticity: current status and future trends. AIAA J 42(10):1953–1972

    Article  Google Scholar 

  98. Hall KC, Kielb RE, Thomas JP (eds) (2003) Unsteady aerodynamic, aeroacoustics and aeroelasticity of turbomachines. In: Proceedings of the 10th international symposium held at Duke University. Springer

    Google Scholar 

  99. Attar P, Tang D, Dowell EH (2009) Nonlinear aeroelastic study for folding wing structures, presented at the NATO AVT-168 symposium on morphing structures

    Google Scholar 

  100. Batina J (2005) Introduction of the asp3d computer program for unsteady aerodynamics and aeroelastic analyses, NASA TM-2005-213909

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl H. Dowell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dowell, E.H. (2022). Some Recent Advances in Nonlinear Aeroelasticity. In: Dowell, E.H. (eds) A Modern Course in Aeroelasticity. Solid Mechanics and Its Applications, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-030-74236-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74236-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74235-5

  • Online ISBN: 978-3-030-74236-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics