Skip to main content

Interorgan Metabolism, Nutritional Impacts, and Safety of Dietary L-Glutamate and L-Glutamine in Poultry

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1332)

Abstract

L-glutamine (Gln) is the most abundant amino acid (AA) in the plasma and skeletal muscle of poultry, and L-glutamate (Glu) is among the most abundant AAs in the whole bodies of all avian tissues. During the first-pass through the small intestine into the portal circulation, dietary Glu is extensively oxidized to CO2, but dietary Gln undergoes limited catabolism in birds. Their extra-intestinal tissues (e.g., skeletal muscle, kidneys, and lymphoid organs) have a high capacity to degrade Gln. To maintain Glu and Gln homeostasis in the body, they are actively synthesized from branched-chain AAs (abundant AAs in both plant and animal proteins) and glucose via interorgan metabolism involving primarily the skeletal muscle, heart, adipose tissue, and brain. In addition, ammonia (produced from the general catabolism of AAs) and α-ketoglutarate (α-KG, derived primarily from glucose) serve as substrates for the synthesis of Glu and Gln in avian tissues, particularly the liver. Over the past 20 years, there has been growing interest in Glu and Gln metabolism in the chicken, which is an agriculturally important species and also a useful model for studying some aspects of human physiology and diseases. Increasing evidence shows that the adequate supply of dietary Glu and Gln is crucial for the optimum growth, anti-oxidative responses, productivity, and health of chickens, ducklings, turkeys, and laying fowl, particularly under stress conditions. Like mammals, poultry have dietary requirements for both Glu and Gln. Based on feed intake, tissue integrity, growth performance, and health status, birds can tolerate up to 12% Glu and 3.5% Gln in diets (on the dry matter basis). Glu and Gln are quantitatively major nutrients for chickens and other avian species to support their maximum growth, production, and feed efficiency, as well as their optimum health and well-being.

Keywords

  • Amino acids
  • Feed efficiency
  • Growth
  • Health
  • Productivity
  • And poultry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-74180-8_7
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-74180-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2

Abbreviations

α-KG:

α-Ketoglutarate

AA:

Amino acid

BCAA:

Branched-chain amino acid

BW:

Body weight

CP:

Crude protein

EDL:

Extensor digitorum longus

GABA:

γ-Aminobutyrate

MSG:

Monosodium glutamate

MTOR:

Mechanistic target of rapamycin

NRC:

National Research Council

PEPCK:

Phosphoenolpyruvate carboxykinase

References

  • Abdulkarimi R, Shahir MH, Daneshyar M (2019) Effects of dietary glutamine and arginine supplementation on performance, intestinal morphology and ascites mortality in broiler chickens reared under cold environment. Asian-Australas J Anim Sci 32:110–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Applegate TJ, Angel R (2014) Nutrient requirements of poultry publication: history and need for an update. J Appl Poult Res 23:557–567

    CrossRef  CAS  Google Scholar 

  • Austic RE (1973) Conversion of arginine to proline in the chick. J Nutr 103:999–1007

    CAS  PubMed  CrossRef  Google Scholar 

  • Austic RE, Nesheim MC (1971) Arginine, ornithine and proline metabolism of chicks: influence of diet and heredity. J Nutr 101:1403–1413

    CAS  PubMed  CrossRef  Google Scholar 

  • Awad EA, Zulkifli I, Farjam AS, Chwen LT (2014) Amino acids fortification of low-protein diet for broilers under tropical climate. 2. Nonessential amino acids and increasing essential amino acids. Italian J Anim Sci 13:3297

    Google Scholar 

  • Ayazi M (2014) The effect of dietary glutamine supplementation on performance and blood antioxidant status of broiler chickens under continuous heat stress condition. Int J Farming Allied Sci 3:1213–1219

    Google Scholar 

  • Bailey CA (2020) Precision poultry nutrition and feed formulation. In: Bazer FW, Lamb GC, Wu G (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 367–378

    CrossRef  Google Scholar 

  • Baker DH (2009) Advances in protein-amino acid nutrition of poultry. Amino Acids 37:29–41

    CAS  PubMed  CrossRef  Google Scholar 

  • Baker DH, Han Y (1994) Ideal amino acid profile for chicks during the first three weeks posthatching. Poult Sci 73:1441–1447

    CAS  PubMed  CrossRef  Google Scholar 

  • Bartell SM, Batal AB (2007) The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult Sci 86:1940–1947

    CAS  PubMed  CrossRef  Google Scholar 

  • Bezerra RM, Costa FGP, Givisiez PEN, de Castro GC, dos Santos RA, de Lima MR (2015) Glutamic acid supplementation on low protein diets for laying hens. Acta Scientiarum Anim Sci 37:129–134

    CAS  CrossRef  Google Scholar 

  • Bezerra RM, Costa FGP, Givisiez PEN, Freitas ER, Goulart CC, Santos RA et al (2016) Effect of l-glutamic acid supplementation on performance and nitrogen balance of broilers fed low protein diets. J Anim Physiol Anim Nutr (berl) 100:590–600

    CAS  CrossRef  Google Scholar 

  • Bigot K, Mignon-Grasteau S, Picard M, Tesseraud S (2003) Effects of delayed feed intake on body, intestine, and muscle development in neonate broilers. Poult Sci 82:781–788

    CAS  PubMed  CrossRef  Google Scholar 

  • Bortoluzzi C, Rochell SJ, Applegate TJ (2018) Threonine, arginine, and glutamine: influences on intestinal physiology, immunology, and microbiology in broilers. Poult Sci 97:937–945

    CAS  PubMed  CrossRef  Google Scholar 

  • Brosnan JT (2000) Glutamate, at the Interface between amino acid and carbohydrate metabolism. J Nutr 130:988S-990S

    CAS  PubMed  CrossRef  Google Scholar 

  • Brosnan JT (2003) Interorgan amino acid transport and its regulation. J Nutr 133:2068S-2072S

    CAS  PubMed  CrossRef  Google Scholar 

  • Brosnan ME, Brosnan JT (2004) Renal arginine metabolism. J Nutr 134:2791S-2795S

    CAS  PubMed  CrossRef  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) Branched-chain amino acids: enzyme and substrate regulation. J Nutr 136:207S-211S

    CAS  PubMed  CrossRef  Google Scholar 

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45:413–418

    CAS  PubMed  CrossRef  Google Scholar 

  • Brown GW Jr (1966) Studies in comparative biochemistry and evolution. I. Avian liver arginase. Arch Biochem Biophys 114:184–194

    Google Scholar 

  • Careghi C, Tona K, Onagbesan O, Buyse J, Decuypere E, Bruggeman V (2005) The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poult Sci 84:1314–1320

    CAS  PubMed  CrossRef  Google Scholar 

  • Corzo A, Fritts CA, Kidd MT, Kerr BJ (2005) Response of broiler chicks to essential and non-essential amino acid supplementation of low crude protein diets. Anim Feed Sci Technol 118:319–327

    CAS  CrossRef  Google Scholar 

  • Dai SF, Wang LK, Wen AY, Wang LX, Jin GM (2009) Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress. Br Poult Sci 50:333–340

    CAS  PubMed  CrossRef  Google Scholar 

  • Dibner JJ, Knight CD, Kitchell ML, Atwell CA, Downs AC, Ivey FJ (1998) Early feeding and development of the immune system in neonatal poultry. J Appl Poult Res 7:425–436

    CAS  CrossRef  Google Scholar 

  • Dodgson JB, Romanov MN (2004) Use of chicken models for the analysis of human disease. Curr Protoc Hum Genet 40:15.5.1–15.5.12

    Google Scholar 

  • Dong X, Yang C, Tang S, Jiang Q, Zou X (2010) Effect and mechanism of glutamine on productive performance and egg quality of laying hens. Asian-Australas J Anim Sci 23:1049–1056

    CAS  CrossRef  Google Scholar 

  • Ebadiasl G (2011) Effects of supplemental glutamine and glutamate on growth performance, gastrointestinal development, jejunum morphology and Clostridium perfringens count in caecum of broilers. Thesis, Swedish University of Agricultural Science, Uppsala

    Google Scholar 

  • Fanguy R, Misra L, Vo K, Blohowiak C, Krueger W (1980) Effect of delayed placement on mortality and growth performance of commercial broilers. Poult Sci 59:1215–1220

    CrossRef  Google Scholar 

  • Fasina YO, Bowers JB, Hess JB, Mckee SR (2010) Effect of dietary glutamine supplementation on Salmonella colonization in the ceca of young broiler chicks. Poult Sci 89:1042–1048

    Google Scholar 

  • Fathi M, Heidari M, Ahmadisefat AA, Habibian M, Moeini MM (2015) Influence of dietary glutamine supplementation on performance, biochemical indices and enzyme activities in broilers with cold-induced ascites. Anim Prod Sci 56:2047–2053

    Google Scholar 

  • Fernandes JIM, Murakami AE, Rorig A, Bordignon HLF, Ribeiro MV, Kaneko IN, dos Santos TC (2018) Effect of dietary glutamine supplementation associated with threonine levels in the intestinal mucosa of broilers challenged with Eimeria sp. from 22 to 42 days of age. Semina: Ciências Agrárias, Londrina 39:1239–1254

    Google Scholar 

  • Furukawa K, He WL, Leyva-Jimenez H, Bailey CA, Bazer FW, Toyomizu M, Wu G (2018) Developmental changes in the activities of enzymes for polyamine synthesis in chickens. Poult Sci 97(E-Suppl 1):3–4

    Google Scholar 

  • Furukawa K, Kikusato M, Wu G, Toyomizu M (2020) Suppressive effects of glutamate and glutamine co-supplementation on muscle proteolysis in heat-stressed broiler chickens. Poultry Science Association Annual Meeting (Virtual)

    Google Scholar 

  • Gholipour V, Chamani M, Shahryar HA, Sadeghi A, Afshar MA (2017) Effects of dietary L-glutamine supplement on performance, egg quality, fertility and some blood biochemical parameters in Guinea fowls (Numida meleagris). Kafkas Univ Vet Fak Derg 23:903–910

    Google Scholar 

  • Gilbreath KR, Bazer FW, Satterfield MC, Wu G (2021) Amino acid nutrition and reproductive performance in ruminants. Adv Exp Med Biol 1285:43–61

    Google Scholar 

  • He WL (2019) Utilization of energy substrates by chicken and pig enterocytes. M.S. Thesis. Texas A&M University, College Station, Texas, USA

    Google Scholar 

  • He W, Wu G (2020) Metabolism of amino acids in the brain and their roles in regulating food intake. Adv Exp Med Biol 1265:167–185

    CAS  PubMed  CrossRef  Google Scholar 

  • He WL, Furukawa K, Leyva-Jimenez H, Bailey CA, Wu G (2018) Oxidation of energy substrates by enterocytes of 0- to 42-day-old chickens. Poult Sci 97 (E-Suppl 1):3

    Google Scholar 

  • He WL, Li P, Wu G (2021) Amino acid nutrition and metabolism in chickens. Adv Exp Med Biol 1285:109–131

    Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hou YQ, Wu G (2018) L-Glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    CAS  PubMed  CrossRef  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    CAS  PubMed  CrossRef  Google Scholar 

  • Hu H, Bai X, Wen A, Shah AA, Dai S, Ren Q, Wang S, He S, Wang L (2016b) Assessment of interactions between glutamine and glucose on meat quality, AMPK, and glutamine concentrations in pectoralis major meat of broilers under acute heat stress. J Appl Poult Res 25:370–378

    CAS  CrossRef  Google Scholar 

  • Hu H, Bai X, Shah AA, Wen AY, Hua JL, Che CY, He SJ, Jiang JP, Cai ZH, Dai SF (2016a) Dietary supplementation with glutamine and γ-aminobutyric acid improves growth performance and serum parameters in 22- to 35-day-old broilers exposed to hot environment. J Anim Physiol Anim Nutr 100:361–370

    CAS  CrossRef  Google Scholar 

  • Hu Q, Agarwal U, Bequette BJ (2017) Gluconeogenesis, non-essential amino acid synthesis and substrate partitioning in chicken embryos during later development. Poult Sci 96:414–424

    Google Scholar 

  • Jazideh F, Farhoomand P, Daneshyar M, Najafi G (2014) The effects of dietary glutamine supplementation on growth performance and intestinal morphology of broiler chickens reared under hot conditions. Turk J Vet Anim Sci 38:264–270

    Google Scholar 

  • Khadiga AAA, Mohammed S, Saad AM, Mohamed HE (2009) response of broiler chicks to dietary monosodium glutamate. Pakistan Vet J 29:165–168

    Google Scholar 

  • Khempaka S, Okrathok S, Hokking L, Thukhanon B, Molee W (2011) Influence of supplemental glutamine on nutrient digestibility and utilization, small intestinal morphology and gastrointestinal tract and immune organ developments of broiler chickens. Int J Anim Vet Sci 5:497–499

    Google Scholar 

  • Kidd M (2004) Nutritional modulation of immune function in broilers. Poult Sci 83:650–657

    CAS  PubMed  CrossRef  Google Scholar 

  • Klain G, Johnson BC (1962) Metabolism of labeled aminoethanol, glycine, and arginine in the chick. J Biol Chem 237:123–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Leveille GA, Fisher H (1959) Amino acid requirements for maintenance in the adult rooster. II. The requirements for glutamic acid, histidine, lysine and arginine. J Nutr 69:289–294

    CAS  PubMed  CrossRef  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Li XL, Zheng SX, Wu G (2020) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–691

    Google Scholar 

  • Li XY, Zheng SX, Wu G (2021a) Nutrition and functions of amino acids in fish. Adv Exp Med Biol 1285:133–168

    Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2021b) Nutrition and functions of amino acids in aquatic crustaceans. Adv Exp Med Biol 1285:169–197

    Google Scholar 

  • Luquetti BC, Alarcon MFF, Lunedo R, Campos DMB, Furlan RL, Marcos Macari M (2016) Effects of glutamine on performance and intestinal mucosa morphometry of broiler. Sci Agric 73:322-327  

    Google Scholar 

  • Ma XY, Zhou GL, Lin YC, Jiang ZY, Zheng CT, Chen F (2011) Effects of sodium glutamate supplementation on growth performance and meat flavor of yellow-feathered broilers. Chin J Anim Nutr 23:410–416

    Google Scholar 

  • Manvailer GV, Kiefer C, de Souza KMR, Marçal DA, Paiva LL, Rodrigues GPE, Ozelame AM (2015) Glutamine for broilers reared in hot environment. Arch Zootec 64:377–382

    Google Scholar 

  • Maruyama K, Sunde ML, Harper AE (1976) Is L-glutamic acid nutritionally a dispensable amino acid for the young chick? Poult Sci 55:45–60

    Google Scholar 

  • Maslami V, Mirnawati J, Nur YS, Marlida Y (2019) Effect of glutamate supplementation as a feed additive on performance of broiler chickens. J World Poult Res 9:154–159

    Google Scholar 

  • Moran ET Jr (2017) Nutrients central to maintaining intestinal absorptive efficiency and barrier integrity with fowl. Poult Sci 96:1348–1363

    Google Scholar 

  • Murakami AE, Sakamoto MI, Natali MRM, Souza LMG, Franco JRG (2007) Supplementation of glutamine and vitamin E on the morphometry of the intestinal mucosa in broiler chickens. Poult Sci 86:488–495

    Google Scholar 

  • Mussinni FJ, Goddgame SD, Lu C, Bradley CD, Fiscus SM, Waldroup PW (2012) A nutritional approach to the use of anticoccidial vaccines in broilers: glutamine utilization in critical stages of immunity acquisition. Int J Poult Sci 11:243–246

    CrossRef  Google Scholar 

  • Namroud NF, Shivazad M, Zaghari M, Madadgar O, Nourijelyani K (2017) Impact of dietary glutamine on amino acid digestibility values and intestinal morphometric parameters in neonate chicks. South Afr J Anim Sci 47:440–453

    Google Scholar 

  • Nascimento KMRS, Kiefer C, Mauad JRC, Paiva LL, Berno PR, Marçal DA, de Freitas HB (2017) Glutamine supplementation plans for broilers reared in high-temperature environments. R Bras Zootec 46:218–222

    Google Scholar 

  • NRC (National Research Council 1994) Nutrient requirement of poultry. National Academies Press, Washington, DC

    Google Scholar 

  • Olubodun JO, Zulkifli I, Farjam AS, Hair-Bejo M, Kasim A (2015a) Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition. Italian J Anim Sci 14:3263

    CrossRef  CAS  Google Scholar 

  • Olubodun J, Zulkifli I, Hair-Bejo M, Kasim A, Soleimani AF (2015b) Physiological response of glutamine and glutamic acid supplemented broiler chickens to heat stress. Eur Poult Sci 79:1–12

    Google Scholar 

  • Pelicia VC, Ducatti C, de Araujo PC, Stradiotti AC, Aoyagi MM, Fernandes BS, Silva ET, Sartori JR (2015) Trophic action of phytogenic additives, glutamine and glutamic acid on Bursa Fabricii and small intestine of broilers. Pesq Vet Bras 35:691–699

    CrossRef  Google Scholar 

  • Penz AM Jr, Jensen LS (1991) Influence of protein concentration, amino acid supplementation and daily time to access to high to low protein diets on egg weight and components in laying hens. Poult Sci 70:2460–2466

    CAS  CrossRef  Google Scholar 

  • Porteous JW (1980) Glutamate, glutamine, aspartate, asparagine, glucose and ketone-body metabolism in chick intestinal brush-border cells. Biochem J 188:619–632

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Porto ML, Givisiez PEN, Saraiva EP, Costa FGP, Moreira Filho ALB, Andrade MFS, Brandão PA, Guerra RR (2015) Glutamic acid improves body weight gain and intestinal morphology of broiler chickens submitted to heat stress. Rev Bras Cienc Avic 17:355–362

    CrossRef  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Eide SJ, Lovering SL, Wu G (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    CAS  PubMed  CrossRef  Google Scholar 

  • Ribeiro V Jr, Albino LFT, Rostagno HS, Hannas MI, Ribeiro CLN, Vieira RA, de Araújo WAG, Pessoa GBS, Messias RKG, Silva DL (2015) Effects of dietary L-glutamine or L-glutamine plus L-glutamic acid supplementation programs on the performance and breast meat yield uniformity of 42-d-old broilers. Brazilian J Poult Sci 17:93–98

    CrossRef  Google Scholar 

  • Salmanzadeh M, Shahryar HA (2013) Effects of dietary supplementation with glutamine on growth performance, small intestinal morphology and carcass traits in turkey poults under heat stress. Revue Med Vet 64:476–480

    Google Scholar 

  • Salmanzadeh M, Ebrahimnezhad Y, Shahryar HA, JamshidGhiasi Ghaleh-Kandi JG (2016) The effects of in ovo feeding of glutamine in broiler breeder eggs on hatchability, development of the gastrointestinal tract, growth performance and carcass characteristics of broiler chickens. Arch Anim Breed 59:235–242  

    Google Scholar 

  • Sasse CE, Baker DH (1973) Modification of the Illinois reference standard amino acid mixture. Poult Sci 52:1970–1972

    CAS  PubMed  CrossRef  Google Scholar 

  • Shakeri M, Zulkifli I, Soleimani AF, O’Reilly EL, Eckersall PD, Anna AA, Kumari S, Abdullah FFJ (2014) Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poult Sci 93:2700–2708

    Google Scholar 

  • Shakeri M, Zulkifli I, Oskoueian E, Shakeri M, Oskoueian A, Ebrahimi M (2016) Response to dietary supplementation of glutamine in broiler chickens subjected to transportation stress. J Fac Vet Med Istanbul Univ 42:122–131

    Google Scholar 

  • Smith DD, Campbell JW (1983) Subcellular location of chicken brain glutamine synthetase and comparison with chicken liver mitochondrial glutamine synthetase. J Biol Chem 258:12265–12268

    Google Scholar 

  • Soltan MA (2009) Influence of dietary glutamine supplementation on growth performance, small intestinal morphology, immune response and some blood parameters of broiler chickens. Int J Poult Sci 8:60–68

    CAS  CrossRef  Google Scholar 

  • Tinker DA, Brosnan JT, Herzberg GR (1986) Interorgan metabolism of amino acids, glucose, lactate, glycerol and uric acid in the domestic fowl (Gallus domesticus). Biochem J 240:829–836

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vorhaben JE, Campbell JW (1977) Submitochondrial localization and function of enzymes of glutamine metabolism in avian liver. J Cell Biol 73:300–310

    CAS  PubMed  CrossRef  Google Scholar 

  • Watford M (2000) Glutamine and glutamate metabolism across the liver sinusoid. J Nutr 130:983S–987S

    Google Scholar 

  • Watford M (2008) Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 138:2003S–2007S

    Google Scholar 

  • Watford M, Wu G (2005) Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp Biochem Physiol B Biochem Mol Biol 140:607–614

    Google Scholar 

  • Watford M, Hod Y, Chiao YB, Utter MF, Hanson RW (1981) The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. J Biol Chem 256:10023–10027

    Google Scholar 

  • Wecke C, Liebert F (2013) Improving the reliability of optimal in-feed amino acid ratios based on individual amino acid efficiency data from N balance studies in growing chicken. Animals (basel) 3:558–573

    Google Scholar 

  • Wecke C, Khan D, Sunder A, Liebert F (2018) Age and gender dependent nutrient composition of feather and feather-free body fractions in meat-type chickens. Open J Anim Sci 8:74–86

    Google Scholar 

  • Welbourne TC (1987) Interorgan glutamine flow in metabolic acidosis. Am J Physiol 53:F1069–F1076

    Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wu G (2018a) Principles of animal nutrition. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wu G (2018b) Functional amino acids in poultry nutrition: recent developments and practical applications. Annual meeting of poultry science association. San Antonio, TX (July 23–26, 2018)

    Google Scholar 

  • Wu G (2020) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Google Scholar 

  • Wu G (2021) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu G, Thompson JR (1987) Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem 19:937–943

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu G, Thompson JR (1988) The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J 255:139–144

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu G, Thompson JR (1990) The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem J 265:593–598

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu G, Thompson JR, Sedgwick G, Drury M (1989) Formation of alanine and glutamine in chick (Gallus domesticus) skeletal muscle. Comp Biochem Physiol 93B:609–613

    CAS  Google Scholar 

  • Wu G, Thompson JR, Baracos VE (1991) Glutamine metabolism in skeletal muscle from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem J 274:769–774

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu G, Flynn NE, Yan W, Barstow DG Jr (1995) Glutamine metabolism in chick enterocytes: absence of pyrroline-5-carboxylate synthase and citrulline synthesis. Biochem J 306:717–721

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    Google Scholar 

  • Wu G, Chung-Bok M, Vincent N, Kowalski TJ, Choi YH, Watford M (1998) Distribution of phosphate-activated glutaminase isozymes in the chicken: absence from liver but presence of high activity in pectoralis muscle. Comp Biochem Physiol B 120:285–290

    Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li XL, Wang JJ (2011) Important roles for L-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    CAS  PubMed  CrossRef  Google Scholar 

  • Xi PB, Jiang ZY, Zheng CT, Lin YC, Wu G (2011) Regulation of protein metabolism by glutamine: implications for nutrition and health. Front Biosci 16:578–597

    CAS  CrossRef  Google Scholar 

  • Xi PB, Jiang ZY, Dai ZL, Li XL, Yao K, Zheng CT, Lin YC, Wang JJ, Wu G (2012) Regulation of protein turnover by L-glutamine in porcine intestinal epithelial cells. J Nutr Biochem 23:1012–1017

    CAS  PubMed  CrossRef  Google Scholar 

  • Xue GD, Barekatain R, Wu SB, Choct M, Swick RA (2018) Dietary L-glutamine supplementation improves growth performance, gut morphology, and serum biochemical indices of broiler chickens during necrotic enteritis challenge. Poult Sci 97:1334–1341

    CAS  PubMed  CrossRef  Google Scholar 

  • Yi GF, Allee GL, Knight CD, Dibner JJ (2005) Impact of glutamine and oasis hatchling supplement on growth performance, small intestinal morphology, and immune response of broilers vaccinated and challenged with Eimeria maxima. Poult Sci 84:283–293

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang Y, Zhao L, Zhou Y, Diao C, Han L, Yinjie N, Liu S, Chen H (2017) Glutamine ameliorates mucosal damage caused by immune responses to duck plague virus. Dose-Response 2017:1–11

    CAS  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2021) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Google Scholar 

  • Zulkifli I, Shakeri M, Soleimani AF (2016) Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement. Poult Sci 95:2757–2763

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Texas A&M AgriLife Research (H-8200) and Japan Society for the Promotion of Science (JSPS) Core-to-Core Advanced Research Networks Program, entitled “Establishment of International Agricultural Immunology Research-Core for a Quantum Improvement in Food Safety.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

He, W., Furukawa, K., Toyomizu, M., Nochi, T., Bailey, C.A., Wu, G. (2021). Interorgan Metabolism, Nutritional Impacts, and Safety of Dietary L-Glutamate and L-Glutamine in Poultry. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-74180-8_7

Download citation