Skip to main content

Fractalization of Chaos and Complexity: Proposition of a New Method in the Study of Complex Systems

  • Conference paper
  • First Online:
Chaos, Complexity and Leadership 2020

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Proposition of new methods for the study of complex systems and chaos is working on the frontiers of knowledge and hence it calls for philosophical contemplation besides well-set empirical researches. Complex system studies still suffer methodological paucity. Hence, the research goal is proposing a new generic methodology in the domain of chaotic and complex systems’ behavior study. The research in the theorization section discusses the epistemology of the proposed method (philosophic belief, logical justification and mathematical warrant) for pattern formation in chaos and complexity. Later, in the section on how to use the method in practice, the procedures of finding recursions and their fractalization are illustrated for organizational power. Our discussions deepen generic understanding of the connections between chaos/complexity and fractalization and thus the potential disciplines for the implementation of the introduced method could be a large spectrum embracing the humanities to the natural sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Philosophical theory of knowledge based on the assertion that the mind perceives only mental images (representations) of material objects outside the mind, not the objects themselves” [12].

  2. 2.

    “A view that asserts that entities of a given kind are identical to, or are collections or combinations of, entities of another (often simpler or more basic) kind or that expressions denoting such entities are definable in terms of expressions denoting other entities” [11].

  3. 3.

    Besides Warrant which could be interchangeably used in place of Justification.

  4. 4.

    In Logic, the symbols: (logical conjunction) means ‘and’, ¬ (negation) means ‘not’, (material implication) means ‘implies’, (material equivalence) means ‘the same as’.

  5. 5.

    This phrase is coined by the authors and it indicates any endeavor on the side of the researchers for finding meaningful repetitive – i.e. recursive - sets of numbers within the available data.

  6. 6.

    The software Fractal Real Finder is available online. See www.researchgate.net/profile/Cristina_Serpa, for information on how to download it and for support materials.

  7. 7.

    The software Fractal Real Finder is available online. See www.researchgate.net/profile/Cristina_Serpa, for information on how to download it and for support materials.

  8. 8.

    There is a simple and easy tutorial about this test on page: https://www.real-statistics.com/non-parametric-tests/goodness-of-fit-tests/two-sample-kolmogorov-smirnov-test/.

  9. 9.

    The computation of such an equation may be done in the page https://www.wolframalpha.com/.

References

  1. Akhmet, M., Fen, M. O., & Alejaily, E. M. (2020). Dynamics with Chaos and Fractals. Springer. https://doi.org/10.1007/978-3-030-35854-9

    Article  MATH  Google Scholar 

  2. Arévalo, L. E. B., & Espinosa, A. (2015). Theoretical approaches to managing complexity in organizations: A comparative analysis. Estudios Gerenciales, 31(134), 20–29. https://doi.org/10.1016/j.estger.2014.10.001

    Article  Google Scholar 

  3. Arthur, W. B. (1999). Complexity and the economy. Science, 284(April), 107–110. https://doi.org/10.1126/science.284.5411.107

    Article  ADS  Google Scholar 

  4. Arthur, W. B. (1999). Complexity and the economy. Science, 284(5411), 107–109.

    Article  ADS  Google Scholar 

  5. Asllani, M., Challenger, J. D., Pavone, F. S., Sacconi, L., & Fanelli, D. (2014). The theory of pattern formation on directed networks. Nature Communications, 5(1), 1–9. https://doi.org/10.1038/ncomms5517

    Article  Google Scholar 

  6. Audouin, M., Preiser, R., Nienaber, S., Downsborough, L., Lanz, J., & Mavengahama, S. (2013). Exploring the implications of critical complexity for the study of social ecological systems. Ecology and Society, 18(3). https://doi.org/10.5751/ES-05434-180312.

  7. Bar-Yam, Y. (2002). General features of complex systems. Encyclopedia of life support systems (EOLSS). Oxford, UK: UNESCO, EOLSS Publishers.

    Google Scholar 

  8. Bedau, M. A., McCaskill, J. S., Packard, N. H., & Rasmussen, S. (2010). Living technology: Exploiting life’s principles in technology. Artificial Life, 16(1), 89–97.

    Article  Google Scholar 

  9. Boers, N., Kurths, J., & Marwan, N. (2021). Complex systems approaches for Earth system data analysis. Journal of Physics: Complexity.

    Google Scholar 

  10. Boulton, J., Allen, P., & Bowman, C. (2015). Embracing complexity: Strategic perspectives for an age of turbulence. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199565252.001.0001

    Book  MATH  Google Scholar 

  11. Britannica, T. (2020). Editors of encyclopaedia (2020, February 28). Reductionism. Encyclopedia Britannica. https://www.britannica.com/topic/reductionism.

  12. Britannica, T. (2016). Editors of encyclopaedia (2016, April 8). Representationism. Encyclopedia Britannica. https://www.britannica.com/topic/representationism.

  13. Buescu, J., & Serpa, C. (2019). Fractal and Hausdorff dimensions for systems of iterative functional equations. Journal of Mathematical Analysis and Applications, 480(2), 123429.

    Article  MathSciNet  Google Scholar 

  14. Chu, D., Strand, R., & Fjelland, R. (2003). Theories of complexity: Common denominators of complex systems. Complexity, 8(3), 19–30. https://doi.org/10.1002/cplx.10059

    Article  MathSciNet  Google Scholar 

  15. Cilliers, P. (2016). In R. Preiser (Ed.), Critical complexity, collected essays. Berlin, Boston: De Gruyter. https://doi.org/10.1515/9781501502590

  16. Cramer, F. (1993). Chaos and order: The complex structure of living systems. Cambridge: VCH.

    Google Scholar 

  17. Drożdż, S., Kwapień, J., & Oświęcimka, P. (2021). Complexity in economic and social systems. Entropy, 23(2), 133. https://doi.org/10.3390/e23020133

    Article  ADS  Google Scholar 

  18. Falconer, K. (2004). Fractal geometry: Mathematical foundations and applications. Wiley.

    Google Scholar 

  19. Foote, R. (2007). Mathematics and complex systems. Science, 318(5849), 410–412.

    Article  ADS  MathSciNet  Google Scholar 

  20. Forouharfar, A. (2020). The anatomy and ontology of organizational power as a fractal metaphor: A philosophical approach. Cogent Business & Management, 7(1), 1728072. https://doi.org/10.1080/23311975.2020.1728072

    Article  Google Scholar 

  21. Gerrits, L., & Marks, P. K. (Eds.). (2012). Compact I: Public administration in complexity. ISCE Publishing.

    Google Scholar 

  22. Goldenfeld, N., & Kadanoff, L. P. (1999). Simple lessons from complexity. Science, 284(5411), 87–89.

    Article  ADS  Google Scholar 

  23. Guidara, A. (2021). Complex systems and public policy. In Policy decision modeling with fuzzy logic. Studies in fuzziness and soft computing (Vol. 405). Cham: Springer. https://doi.org/10.1007/978-3-030-62628-0_3.

  24. Holland, J. H. (2000). Emergence: From chaos to order. OUP Oxford.

    Google Scholar 

  25. Ladyman, J., Lambert, J., & Wiesner, K. (2013). What is a complex system? European Journal for Philosophy of Science, 3, 33–67. https://doi.org/10.1007/s13194-012-0056-8

    Article  MATH  Google Scholar 

  26. Markie, P. (2010). The power of perception. In J. Dancy, E. Sosa, & M. Steup (Eds.), A companion to epistemology, (2nd Ed., p. 72). New York: Wiley-Blackwell.

    Google Scholar 

  27. Mazzocchi, F. (2016). Complexity, network theory, and the epistemological issue. Kybernetes, 45(7), 1158–1170. https://doi.org/10.1108/K-05-2015-0125

    Article  Google Scholar 

  28. McGrath, M. & Frank, D. (2020). Propositions. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Winter, 2020 Edn.). https://plato.stanford.edu/archives/win2020/entries/propositions.

  29. Merriam-Webster’s collegiate dictionary. (2021a). https://www.merriam-webster.com/dictionary/circularity.

  30. Merriam-Webster’s collegiate dictionary. (2021b). https://www.merriam-webster.com/dictionary/virtuous%20circle.

  31. Merriam-Webster’s collegiate dictionary. (2002). (10th). Massachusetts, USA: Springfield.

    Google Scholar 

  32. Parrish, J. K., & Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 284(5411), 99–101.

    Article  ADS  Google Scholar 

  33. Preiser, R. (2019). Identifying general trends and patterns in complex systems research: An overview of theoretical and practical implications. Systems Research and Behavioral Science, 36(5), 706–714. https://doi.org/10.1002/sres.2619

    Article  Google Scholar 

  34. Preiser, R., Biggs, R., de Vos, A., & Folke, C. (2018). Social-ecological systems as complex adaptive systems: Organizing principles for advancing research methods and approaches. Ecology and Society, 23(4), 46.

    Article  Google Scholar 

  35. Rescher, N. (1998). Complexity; A philosophical overview. New Brunswick, NJ: Transaction Publishers.

    Google Scholar 

  36. Rind, D. (1999). Complexity and climate. Science, 284(5411), 105–107.

    Article  ADS  Google Scholar 

  37. Schlindwein, S. L., & Ison, R. (2004). Human knowing and perceived complexity: Implications for systems practice. Emergence: Complexity and Organization, 6(3), 27–32.

    Google Scholar 

  38. Schwitzgebel, E. (2019). Belief. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Fall 2019 Edn.). https://plato.stanford.edu/archives/fall2019/entries/belief.

  39. Serpa, C., & Buescu, J. (2015). Explicitly defined fractal interpolation functions with variable parameters. Chaos, Solitons & Fractals, 75, 76–83.

    Article  ADS  MathSciNet  Google Scholar 

  40. Serpa, C., & Buescu, J. (2017). Constructive solutions for systems of iterative functional equations. Constructive Approximation, 45(2), 273–299.

    Article  MathSciNet  Google Scholar 

  41. Stace, W. T., & Goldstein, J. A. (2006). Novelty, indeterminism and emergence. Complexity & Organization, 8(2), 77–95.

    Google Scholar 

  42. Steup, M. (2016). Epistemology. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Fall 2016 Edn.). https://plato.stanford.edu/archives/fall2016/entries/epistemology/.

  43. Thurner, S., Hanel, R., & Klimek, P. (2018). Introduction to the theory of complex systems. Oxford: Oxford University Press.

    Book  Google Scholar 

  44. Werner, B. T. (1999). Complexity in natural landform patterns. Science, 284(5411), 102–104.

    Article  ADS  Google Scholar 

  45. Whitesides, G. M., & Ismagilov, R. F. (1999). Complexity in chemistry. Science, 284(5411), 89–92.

    Article  ADS  Google Scholar 

  46. Wintermantel, T. M., Buchhold, M., Shevate, S., Morgado, M., Wang, Y., Lochead, G., et al. (2021). Epidemic growth and griffiths effects on an emergent network of excited atoms. Nature Communications12(1), 1–6. https://doi.org/10.1038/s41467-020-20333-7.

  47. Zheng, Z. (2021). An introduction to emergence dynamics in complex systems. In X. Y. Liu, (Ed.), Frontiers and Progress of Current Soft Matter Research. Soft and Biological Matter. Singapore: Springer. https://doi.org/10.1007/978-981-15-9297-3_4

Download references

Acknowledgements

Cristina Serpa acknowledges partial support from National Funding from FCT—Fundação para a Ciência e a Tecnologia, under the project: UIDB/04561/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Forouharfar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serpa, C., Forouharfar, A. (2021). Fractalization of Chaos and Complexity: Proposition of a New Method in the Study of Complex Systems. In: Erçetin, Ş.Ş., Açıkalın, Ş.N., Vajzović, E. (eds) Chaos, Complexity and Leadership 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-74057-3_8

Download citation

Publish with us

Policies and ethics