Skip to main content

Neurochaos: Analyzing the Brain and Its Disorders from a Physics Perspective

  • Conference paper
  • First Online:
Chaos, Complexity and Leadership 2020

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

From stock market dynamics to biophysical variability, many investigations for understanding chaotic behaviors in complex systems have been undertaken. Mathematical models have been developed to reproduce the conditions and approximate end results in these systems with theoretical success albeit limited ecological validity. More recently, however, scientists have been pondering the role of chaos in neuroscience, especially in relation to pathophysiological mechanisms. Does chaos theory have a role in the central nervous system? Can it help explain why some individuals’ brains go awry? Discussion of these and similar questions with potentially promising avenues of research are suggested in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayers, S. (1997). The application of chaos theory to psychology. Theory & Psychology, 7(3), 373–398. https://doi.org/10.1177/0959354397073005.

    Article  Google Scholar 

  2. Bagdy, G., Kecskemeti, V., Riba, P., & Jakus, R. (2007). Serotonin and epilepsy. Journal of Neurochemistry, 100(4), 857–873. https://doi.org/10.1111/j.1471-4159.2006.04277.x.

    Article  Google Scholar 

  3. Bishop, R. (2017). The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University.

    Google Scholar 

  4. Bob, P. (2007). Chaos, brain, and divided consciousness. Acta Universitatis Carolinae. Medica. Monographia, 153, 9–80.

    Google Scholar 

  5. Boldrini, M., Placidi, G. P., & Marazziti, D. (1998). Applications of chaos theories to psychiatry: a review and future perspectives. CNS Spectrums, 3(1), 22–29.

    Article  Google Scholar 

  6. Briggs, J. (1992). Fractals: The patterns of chaos. New York: Schuster Inc.

    Google Scholar 

  7. Buzsaki, G. (2006). Rhythms of the brain. Oxford University Press.

    Google Scholar 

  8. Dana, S., Roy, P. K., & Kurths, J. (2009). Complex dynamics in physiological systems: From heart to brain. https://doi.org/10.1007/978-1-4020-9143-8.

  9. Devaney, R. L. (1989). Dynamics of simple maps in chaos and fractals: The Mathematics behind the computer graphics. In Proceedings of Symposia in Applied Mathematics.

    Google Scholar 

  10. Fakhoury, M. (2016). Revisiting the serotonin hypothesis: implications for major depressive disorders. Molecular Neurobiology, 53(5), 2778–2786. https://doi.org/10.1007/s12035-015-9152-z.

    Article  Google Scholar 

  11. Freeman, W. J. (1994). Chaos in the CNS: Theory and practice. In Neural modeling and neural networks (pp. 185–216).

    Google Scholar 

  12. Friston, K. J. (2011). Models of brain function in neuroimaging. Annual Review of Psychology, 56, 57–87.

    Article  Google Scholar 

  13. Glanz, J. (1997). Mastering the non-linear brain. Science, 1758–1760.

    Google Scholar 

  14. Gleick, J. (1987). Chaos: Making a new science (p. 17). London: Cardinal.

    MATH  Google Scholar 

  15. He, H., & Cline, H. T. (2019). What is excitation/inhibition and how is it regulated? A case of the elephant and the wisemen. Journal of Experimental Neuroscience. https://doi.org/10.1177/1179069519859371.

  16. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837.

    Article  Google Scholar 

  17. Humphrey, P. P., Feniuk, W., Perren, M. J., Beresford, I. J., Skingle, M., & Whalley, E. T. (1990). Serotonin and migraine. Annals of the New York Academy of Sciences, 600, 587–600. https://doi.org/10.1111/j.1749-6632.1990.tb16912.x.

    Article  ADS  Google Scholar 

  18. Ivancevic, T., Jain, L., Pattison, J., & Hariz, A. (2009). Non-linear dynamics and chaos methods in neuro-dynamics and complex data analysis. Nonlinear Dynamics, 56, 23–44.

    Article  MathSciNet  Google Scholar 

  19. Ivancevic, V. G., & Tijani, T. (2008). Complex nonlinearity: Chaos, phase transition, topology change, and path integrals. Berlin: Springer.

    Book  Google Scholar 

  20. Ives, C. (2004). Human beings as chaotic systems. Life Science Technology, 1–7.

    Google Scholar 

  21. Kellert, S. H. (1993). In the wake of chaos: Unpredictable order in dynamical systems. University of Chicago Press.

    Google Scholar 

  22. Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., et al. (2018). Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell, 23(1), 25–30. https://doi.org/10.1016/j.stem.2018.04.004.

    Article  Google Scholar 

  23. Korade, Ž., & Mirnics, K. (2014). Programmed to be human? Neuron, 81(2), 224–226. https://doi.org/10.1016/j.neuron.2014.01.006.

    Article  Google Scholar 

  24. Korn, H., & Faure, P. (2003). Is there chaos in the brain? II. Experimental evidence and related models. Comptes Rendus Biologies, 326, 787–840.

    Article  Google Scholar 

  25. Kozachkov, L., Lundqvist, M., Slotine, J. J., & Miller, E. K. (2020). Achieving stable dynamics in neural circuits. PLoS Computational Biology, 16(8), https://doi.org/10.1371/journal.pcbi.1007659.

    Article  Google Scholar 

  26. Lainscsek, C., Sampson, A. L., Kim, R., Thomas, M. L., Man, K., Lainscsek, X., et al. (2019). Nonlinear dynamics underlying sensory processing dysfunction in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3847–3852. https://doi.org/10.1073/pnas.1810572116.

    Article  Google Scholar 

  27. Lorenz, E. (1963). Deterministic non-periodic flow. Journal of Atmosphere Sciences, 20(2), 130–141.

    Article  ADS  Google Scholar 

  28. Munakata, Y., & Pfaffly, J. (2004). Hebbian learning and development. Developmental Science, 7(2), 141–148. https://doi.org/10.1111/j.1467-7687.2004.00331.x.

    Article  Google Scholar 

  29. Oestreicher, C. (2007). A history of chaos theory. Dialogues in Clinical Neuroscience, 9(3), 279.

    Article  Google Scholar 

  30. Paulus, M. P., & Braff, D. L. (2003). Neuroscience perspectives: Chaos and schizophrenia: Does the method fit the madness. Society of Biological Psychiatry, 53, 3–11.

    Article  Google Scholar 

  31. Poincaré, H. (1899). New methods of celestial mechanics. Gauthier-Villars.

    Google Scholar 

  32. Postavaru, O., Anton, S. R., & Toma, A. (2021). COVID-19 pandemic and chaos theory. Mathematics and Computers in Simulation, 181, 138–149. https://doi.org/10.1016/j.matcom.2020.09.029.

    Article  MathSciNet  MATH  Google Scholar 

  33. Sansom, S. N., & Livesey, F. J. (2009). Gradients in the brain: The control of the development of form and function in the cerebral cortex. Cold Spring Harbor Perspectives in Biology, 1(2), https://doi.org/10.1101/cshperspect.a002519.

    Article  Google Scholar 

  34. Sarbadhikari, S. N., & Chakrabarty, K. (2001). Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization. Medical Engineering & Physics, 23(7), 445–455. https://doi.org/10.1016/s1350-4533(01)00075-3.

    Article  Google Scholar 

  35. Sharma, A., & Couture, J. (2014). A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). The Annals of Pharmacotherapy, 48(2), 209–225. https://doi.org/10.1177/1060028013510699.

    Article  Google Scholar 

  36. Siegelmann, H. T. (2010). Complex systems science and brain dynamics. Frontiers in Computational Neuroscience, 4(7). https://doi.org/10.3389/fncom.2010.00007.

  37. Skarda, C. A., & Freeman, W. J. (1990). Chaos and the new science of the brain. Concepts in Neuroscience, 1(2), 275.

    Google Scholar 

  38. Sohanian Haghighi, H., & Markazi, A. (2017). A new description of epileptic seizures based on dynamic analysis of a thalamocortical model. Scientific Reports, 7(1), 13615. https://doi.org/10.1038/s41598-017-13126-4.

    Article  ADS  Google Scholar 

  39. Sompolinsky, H., Crisanti, A., & Sommers, H. J. (1988). Chaos in random neural networks. Physical Review Letters, 61(3), 259–262.

    Article  ADS  MathSciNet  Google Scholar 

  40. Sparrow, C. (2012). The Lorenz equations: Bifurcations, chaos, and strange attractors (p. 41). Springer Science & Business Media.

    Google Scholar 

  41. Toro, M. G., Ruiz, J. S., Talavera, J. A., & Blanco, C. (1999). Chaos theories and therapeutic commonalities among depression, Parkinson’s disease, and cardiac arrhythmias. Comprehensive Psychiatry, 40(3), 238–244.

    Article  Google Scholar 

  42. Tsatsaris, A., Domenikos, S., Psychos, C., & Moutsiounas, D. (2016). Chaos theory and behavioral patterns: A theoretical approach to psychosis, bipolar disorder, and depression. Journal of Advanced Biotechnology and Bioengineering, 4, 2–8.

    Article  Google Scholar 

  43. Tufillaro, N. B., Abbott, T., & Reilly, J. (1992). An experimental approach to non-linear dynamics and chaos (pp. 138–145).

    Google Scholar 

  44. Venkateshiah, S. B., & Ioachimescu, O. C. (2015). Restless legs syndrome. Critical Care Clinics, 31(3), 459–472. https://doi.org/10.1016/j.ccc.2015.03.003.

    Article  Google Scholar 

  45. Warren, N., O’Gorman, C., Lehn, A., & Siskind, D. (2017). Dopamine dysregulation syndrome in Parkinson’s disease: A systematic review of published cases. Journal of Neurology, Neurosurgery and Psychiatry, 88(12), 1060–1064. https://doi.org/10.1136/jnnp-2017-315985.

    Article  Google Scholar 

  46. Zang, X., Iqbal, S., Zhu, Y., Liu, X., & Zhao, J. (2016). Applications of chaotic dynamics in robotics. International Journal of Advanced Robotic Systems. https://doi.org/10.5772/62796.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Kavakci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kavakci, M. (2021). Neurochaos: Analyzing the Brain and Its Disorders from a Physics Perspective. In: Erçetin, Ş.Ş., Açıkalın, Ş.N., Vajzović, E. (eds) Chaos, Complexity and Leadership 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-74057-3_3

Download citation

Publish with us

Policies and ethics