Skip to main content

Rita Levi-Montalcini, NGF Metabolism in Health and in the Alzheimer’s Pathology

  • Chapter
  • First Online:
Recent Advances in NGF and Related Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((CNNCSN,volume 1331))

Abstract

This chapter relates biographic personal and scientific interactions with Rita Levi-Montalcini. It highlights research from our laboratory inspired by Rita’s fundamental discovery. This work from studies on potentially neuro-reparative gangliosides, their interactions with NGF, the role of exogenous NGF in the recovery of degenerating cholinergic neurons of the basal forebrain to the evidence that endogenous NGF maintains the “day-to-day” cortical synaptic phenotype and the discovery of a novel CNS “NGF metabolic pathway.” This brain pathway’s conceptual platform allowed the investigation of its status during the Alzheimer’s disease (AD) pathology. This revealed a major compromise of the conversion of the NGF precursor molecule (proNGF) into the most biologically active molecule, mature NGF (mNGF). Furthermore, in this pathology, we found enhanced protein levels and enzymatic activity of the proteases responsible for the proteolytic degradation of mNGF. A biochemical prospect explaining the tropic factor vulnerability of the NGF-dependent basal forebrain cholinergic neurons and of their synaptic terminals. The NGF deregulation of this metabolic pathway is evident at preclinical stages and reflected in body fluid particularly in the cerebrospinal fluid (CSF). The findings of a deregulation of the NGF metabolic pathway and its reflection in plasma and CSF are opening doors for the development of novel biomarkers for preclinical detection of AD pathology both in Alzheimer’s and in Down syndrome (DS) with “silent” AD pathology.

My life has been enriched by excellent human relations, work, and interests. I have never felt lonely.

Rita Levi-Montalcini

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard S, Leon WC, Pakavathkumar P, Bruno MA, Ribeiro-Da-Silva A, Cuello AC (2012) Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype. J Neurosci 32:2002–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allard S, Jacobs ML, Do Carmo S, Cuello AC (2018) Compromise of cortical proNGF maturation causes selective retrograde atrophy in cholinergic nucleus basalis neurons. Neurobiol Aging 67:10–20

    Article  CAS  PubMed  Google Scholar 

  • Aloe L (2004) Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol 14:395–399

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  CAS  PubMed  Google Scholar 

  • Blochl A, Thoenen H (1996) Localization of cellular storage compartments and sites of constitutive and activity-dependent release of nerve growth factor (NGF) in primary cultures of hippocampal neurons. Mol Cell Neurosci 7:173–190

    Article  CAS  PubMed  Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496

    Article  CAS  PubMed  Google Scholar 

  • Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A 103:6735–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC (2009a) Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68:857–869

    Article  CAS  PubMed  Google Scholar 

  • Bruno MA, Mufson EJ, Wuu J, Cuello AC (2009b) Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J Neuropathol Exp Neurol 68:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Caccia M, Meola G, Cerri C, Frattola L, Scarlato G, Aporti FJM (1979) Treatment of denervated muscle by gangliosides. Muscle Nerve 2:382–389

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli B, Aporti F, Finesso M (1976) Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation. Adv Exp Med Biol 71:275–293

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Price DL, Delong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC (1990) Glycosphingolipids that can regulate nerve growth and repair. Adv Pharmacol 21:1–50

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC (2012) Gangliosides, NGF, brain aging and disease: a mini-review with personal reflections. Neurochem Res 37:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC, Sofroniew MV (1984) The anatomy of the CNS cholinergic neurons. Trends Neurosci 7:74–78

    Article  CAS  Google Scholar 

  • Cuello AC, Stephens PH, Tagari PC, Sofroniew MV, Pearson RC (1986) Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1. Brain Res 376:373–377

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC, Garofalo L, Kenigsberg RL, Maysinger D (1989) Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons. Proc Natl Acad Sci U S A 86:2056–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuello AC, Pentz R, Hall H (2019) The brain NGF metabolic pathway in health and in Alzheimer’s pathology. Front Neurosci 13:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  • Debeir T, Saragovi HU, Cuello AC (1999) A nerve growth factor mimetic TrkA antagonist causes withdrawal of cortical cholinergic boutons in the adult rat. Proc Natl Acad Sci U S A 96:4067–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Robertis E, De Lores Arnaiz GR, De Iraldi AP (1962) Isolation of synaptic vesicles from nerve endings of the rat brain. Nature 194:794–795

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30:113–121

    Article  CAS  PubMed  Google Scholar 

  • Elliott PJ, Garofalo L, Cuello AC (1989) Limited neocortical devascularizing lesions causing deficits in memory retention and choline acetyltransferase activity—effects of the monosialoganglioside GM1. Neuroscience 31:63–76

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock M, Scott SA, Jette N, Weingartner JA, Crutcher KA (1996) Nerve growth factor mRNA and protein levels measured in the same tissue from normal and Alzheimer’s disease parietal cortex. Brain Res Mol Brain Res 42:175–178

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock M, Yu G, Michalski B, Mathew S, Colquhoun A, Ross GM, Coughlin MD (2004) The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. J Neurochem 89:581–592

    Article  CAS  PubMed  Google Scholar 

  • Farooqui T, Franklin T, Pearl DK, Yates AJ (1997) Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J Neurochem 68:2348–2355

    Article  CAS  PubMed  Google Scholar 

  • Ferreira D, Westman E, Eyjolfsdottir H, Almqvist P, Lind G, Linderoth B, Seiger A, Blennow K, Karami A, Darreh-Shori T, Wiberg M, Simmons A, Wahlund LO, Wahlberg L, Eriksdotter M (2015) Brain changes in Alzheimer’s disease patients with implanted encapsulated cells releasing nerve growth factor. J Alzheimers Dis 43:1059–1072

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo BC, Skup M, Bedard AM, Tetzlaff W, Cuello AC (1995) Differential expression of p140trk, p75NGFR and growth-associated phosphoprotein-43 genes in nucleus basalis magnocellularis, thalamus and adjacent cortex following neocortical infarction and nerve growth factor treatment. Neuroscience 68:29–45

    Article  CAS  PubMed  Google Scholar 

  • Gage FH, Armstrong DM, Williams LR, Varon S (1988) Morphological response of axotomized septal neurons to nerve growth factor. J Comp Neurol 269:147–155

    Article  CAS  PubMed  Google Scholar 

  • Garofalo L, Cuello AC (1994) Nerve growth factor and the monosialoganglioside GM1: analogous and different in vivo effects on biochemical, morphological, and behavioral parameters of adult cortically lesioned rats. Exp Neurol 125:195–217

    Article  CAS  PubMed  Google Scholar 

  • Garofalo L, Cuello AC (1995) Pharmacological characterization of nerve growth factor and/or monosialoganglioside GM1 effects on cholinergic markers in the adult lesioned brain. J Pharmacol Exp Ther 272:527–545

    CAS  PubMed  Google Scholar 

  • Garofalo L, Ribeiro-Da-Silva A, Cuello AC (1992) Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergic terminals. Proc Natl Acad Sci U S A 89:2639–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo L, Ribeiro-Da-Silva A, Cuello AC (1993) Potentiation of nerve growth factor-induced alterations in cholinergic fibre length and presynaptic terminal size in cortex of lesioned rats by the monosialoganglioside GM1. Neuroscience 57:21–40

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer’s disease. Brain Res 387:85–92

    CAS  PubMed  Google Scholar 

  • Gorio A, Carmignoto G, Facci L, Finesso M (1980) Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth. Brain Res 197:236–241

    Article  CAS  PubMed  Google Scholar 

  • Gorio A, Carmignoto G, Finesso M, Polato P, Nunzi MG (1983a) Muscle reinnervation—II. Sprouting, synapse formation and repression. Neuroscience 8:403–IN1

    Article  CAS  PubMed  Google Scholar 

  • Gorio A, Marini P, Zanoni R (1983b) Muscle reinnervation—III. Motoneuron sprouting capacity, enhancement by exogenous gangliosides. Neuroscience 8:417–429

    Article  CAS  PubMed  Google Scholar 

  • Granieri E, Casetta I, Govoni V, Tola MR, Paolino E, Rocca WA (1991) Ganglioside therapy and Guillain-Barre syndrome. A historical cohort study in Ferrara, Italy, fails to demonstrate an association. Neuroepidemiology 10:161–169

    Article  CAS  PubMed  Google Scholar 

  • Grimes ML, Zhou J, Beattie EC, Yuen EC, Hall DE, Valletta JS, Topp KS, Lavail JH, Bunnett NW, Mobley WC (1996) Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci 16:7950–7964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111:457–501

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy JA, Owen MJ, Goate AM, James LA, Haynes AR, Rossor MN, Roques P, Mullan MJ (1989) Molecular genetics of Alzheimer’s disease. Biochem Soc Trans 17:75–76

    Article  CAS  PubMed  Google Scholar 

  • Head E, Lott IT, Wilcock DM, Lemere CA (2016) Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr Alzheimer Res 13:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, Chapman & Hall, New York

    Google Scholar 

  • Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6:2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hefti F, Weiner WJ (1986) Nerve growth factor and Alzheimer’s disease. Ann Neurol 20:275–281

    Article  CAS  PubMed  Google Scholar 

  • Hendry IA, Stöckel K, Thoenen H, Iversen LL (1974) The retrograde axonal transport of nerve growth factor. Brain Res 68:103–121

    Article  CAS  PubMed  Google Scholar 

  • Hock C, Heese K, Müller-Spahn F, Hulette C, Rosenberg C, Otten U (1998) Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neurosci Lett 241(2):151–154. https://doi.org/10.1016/S0304-3940(98)00019-6

    Article  CAS  PubMed  Google Scholar 

  • Hoener MC (2000) Role played by sodium in activity-dependent secretion of neurotrophins—revisited. Eur J Neurosci 12:3096–3106

    Article  CAS  PubMed  Google Scholar 

  • Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Brain Res Mol Brain Res 76:347–354

    Article  CAS  PubMed  Google Scholar 

  • Iulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharmacol Sci 35:338–348

    Article  CAS  PubMed  Google Scholar 

  • Iulita MF, Cuello AC (2016) The NGF metabolic pathway in the CNS and its dysregulation in down syndrome and Alzheimer’s disease. Curr Alzheimer Res 13:53–67

    Article  CAS  PubMed  Google Scholar 

  • Iulita MF, Do Carmo S, Ower AK, Fortress AM, Flores Aguilar L, Hanna M, Wisniewski T, Granholm A-C, Buhusi M, Busciglio J, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Down’s syndrome brains. Brain 137:860–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Iulita MF, Caraci F, Cuello AC (2016a) A link between nerve growth factor metabolic deregulation and amyloid-beta-driven inflammation in Down syndrome. CNS Neurol Disord Drug Targets 15:434–447

    Article  CAS  PubMed  Google Scholar 

  • Iulita MF, Ower A, Barone C, Pentz R, Gubert P, Romano C, Cantarella RA, Elia F, Buono S, Recupero M, Romano C, Castellano S, Bosco P, DI Nuovo S, Drago F, Caraci F, Cuello AC (2016b) An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: relation to cognitive decline and longitudinal evaluation. Alzheimers Dement 12:1132–1148

    Article  PubMed  Google Scholar 

  • Iulita MF, Bistue Millon MB, Pentz R, Aguilar LF, Do Carmo S, Allard S, Michalski B, Wilson EN, Ducatenzeiler A, Bruno MA, Fahnestock M, Cuello AC (2017) Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer’s disease. Neurobiol Dis 108:307–323

    Article  CAS  PubMed  Google Scholar 

  • Jette N, Cole MS, Fahnestock M (1994) NGF mRNA is not decreased in frontal cortex from Alzheimer’s disease patients. Brain Res Mol Brain Res 25:242–250

    Article  CAS  PubMed  Google Scholar 

  • Karami A, Eyjolfsdottir H, Vijayaraghavan S, Lind G, Almqvist P, Kadir A, Linderoth B, Andreasen N, Blennow K, Wall A, Westman E, Ferreira D, Kristoffersen Wiberg M, Wahlund LO, Seiger A, Nordberg A, Wahlberg L, DARREH-Shori T, Eriksdotter M (2015) Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer’s disease. Alzheimers Dement 11:1316–1328

    Article  PubMed  Google Scholar 

  • Kordower JH, Gash DM, Bothwell M, Hersh L, Mufson EJ (1989) Nerve growth factor receptor and choline acetyltransferase remain colocalized in the nucleus basalis (Ch4) of Alzheimer’s patients. Neurobiol Aging 10:67–74

    Article  CAS  PubMed  Google Scholar 

  • Kromer LF (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235:214–216

    Article  CAS  PubMed  Google Scholar 

  • Landi G, Ciccone A, D’alessandro R, Dossi BC, Ricci S, Simone IL (1994) Gangliosides and the Guillain-Barre syndrome. BMJ 308:1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledeen RW (1984) Biology of gangliosides: neuritogenic and neuronotrophic properties. J Neurosci Res 12:147–159

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–191

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1964) Growth control of nerve cells by a protein factor and its antiserum: discovery of this factor may provide new leads to understanding of some neurogenetic processes. Science 143:105–110

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1988) In praise of imperfection : my life and work. Basic Books, New York

    Google Scholar 

  • Levi-Montalcini R (1997) Les conséquences de la destruction d’un territoire d’innervation périphérique sur le développement des centres nerveux correspondants dans l’embryon de poulet. In: The Saga of the nerve growth factor: preliminary studies, discovery, further development. World Scientific

    Google Scholar 

  • Levi-Montalcini R, Aloe L (1985) Differentiating effects of murine nerve growth factor in the peripheral and central nervous systems of Xenopus laevis tadpoles. Proc Natl Acad Sci U S A 82:7111–7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewi O (1921) Über humorale übertragbarkeit der Herznervenwirkung. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 189:239–242

    Article  Google Scholar 

  • Lott IT (1982) Down’s syndrome, aging, and Alzheimer’s disease: a clinical review. Ann N Y Acad Sci 396:15–27

    Article  CAS  PubMed  Google Scholar 

  • Lott IT, Head E (2019) Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol 15:135–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Maysinger D, Herrera-Marschitz M, Carlsson A, Garofalo L, Cuello AC, Ungerstedt U (1988) Striatal and cortical acetylcholine release in vivo in rats with unilateral decortication: effects of treatment with monosialoganglioside GM1. Brain Res 461:355–360

    Article  CAS  PubMed  Google Scholar 

  • Maysinger D, Herrera-Marschitz M, Ungerstedt U, Cuello AC (1990a) Acetylcholine release in vivo: effects of chronic treatment with monosialoganglioside GM1. Neuropharmacology 29:151–159

    Article  CAS  PubMed  Google Scholar 

  • Maysinger D, Herrera-Marschitz M, Ungerstedt U, Cuello AC (1990b) Effects of treatment with microencapsulated monosialoganglioside GM1 on cortical and striatal acetylcholine release in rats with cortical devascularizing lesions. Neurosci Lett 118:252–256

    Article  CAS  PubMed  Google Scholar 

  • Maysinger D, Herrera-Marschitz M, Goiny M, Ungerstedt U, Claudio Cuello, A. (1992) Effects of nerve growth factor on cortical and striatal acetylcholine and dopamine release in rats with cortical devascularizing lesions. Brain Research 577:300–305

    Article  CAS  PubMed  Google Scholar 

  • Mobley WC, Rutkowski JL, Tennekoon GI, Gemski J, Buchanan K, Johnston MV (1986) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol Brain Res 1:53–62

    Article  Google Scholar 

  • Molnar M, Tongiorgi E, Avignone E, Gonfloni S, Ruberti F, Domenici L, Cattaneo A (1998) The effects of anti-nerve growth factor monoclonal antibodies on developing basal forebrain neurons are transient and reversible. Eur J Neurosci 10:3127–3140

    Article  CAS  PubMed  Google Scholar 

  • Mowla SJ, Pareek S, Farhadi HF, Petrecca K, Fawcett JP, Seidah NG, Morris SJ, Sossin WS, Murphy RA (1999) Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J Neurosci 19:2069–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mufson EJ, Lavine N, Jaffar S, Kordower JH, Quirion R, Saragovi HU (1997) Reduction in p140-TrkA receptor protein within the nucleus basalis and cortex in Alzheimer’s Disease. Exp Neurol 146(1):91–103. https://doi.org/10.1006/EXNR.1997.6504

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A 92:5087–5091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307

    Article  CAS  PubMed  Google Scholar 

  • Nitsch RM, Farber SA, Growdon JH, Wurtman RJ (1993) Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc Natl Acad Sci U S A 90:5191–5193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RC, Sofroniew MV, Cuello AC, Powell TP, Eckenstein F, Esiri MM, Wilcock GK (1983) Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res 289:375–379

    Article  CAS  PubMed  Google Scholar 

  • Pedraza CE, Podlesniy P, Vidal N, Arevalo JC, Lee R, Hempstead B, Ferrer I, Iglesias M, Espinet C (2005) Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol 166:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93:1412–1421

    Article  CAS  PubMed  Google Scholar 

  • Pentz R, Iulita MF, Juan Fortea A, Cuello C (2019) Identifying Alzheimer’s disease in Down syndrome with NGF metabolism: hope for better treatment and diagnosis? T21RS Sci Soc Bull 1–3

    Google Scholar 

  • Pentz R, Iulita MF, Ducatenzeiler A, Bennett DA, Cuello AC (2020) The human brain NGF metabolic pathway is impaired in the pre-clinical and clinical continuum of Alzheimers disease. Mol Psychiatry:1–15. https://doi.org/10.1038/S41380-020-0797-2

  • Rabin SJ, Mocchetti I (1995) GM1 ganglioside activates the high-affinity nerve growth factor receptor trkA. J Neurochem 65:347–354

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S, May RM (1928) Degeneration & regeneration of the nervous system. Oxford University Press, Humphrey Milford, London

    Google Scholar 

  • Sabatini MT, Levi-Montalcini R, Angeletti PU (1966) [Early effects of anti-nerve growth factor serum on the nerve cell]. Ann Ist Super Sanita 2:349–355

    Google Scholar 

  • Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, Xia W, Villar A, Campbell WA, Kulnane LS, Nixon RA, Lamb BT, Epstein CJ, Stokin GB, Goldstein LS, Mobley WC (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:29–42

    Article  CAS  PubMed  Google Scholar 

  • Samson J, Fiori MJB (1994) Gangliosides and the Guillain-Barre syndrome. BMJ Clin Res 308(6944):1638

    Article  Google Scholar 

  • Seiler M, Schwab ME (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res 300:33–39

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Pearson RC, Eckenstein F, Cuello AC, Powell TP (1983) Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res 289:370–374

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Pearson RC, Cuello AC, Tagari PC, Stephens PH (1986) Parenterally administered GM1 ganglioside prevents retrograde degeneration of cholinergic cells of the rat basal forebrain. Brain Res 398:393–396

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Galletly NP, Isacson O, Svendsen CN (1990) Survival of adult basal forebrain cholinergic neurons after loss of target neurons. Science 247:338–342

    Article  CAS  PubMed  Google Scholar 

  • Stephens PH, Cuello AC, Sofroniew MV, Pearson RC, Tagari P (1985) Effect of unilateral decortication on choline acetyltransferase activity in the nucleus basalis and other areas of the rat brain. J Neurochem 45:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Stephens PH, Tagari PC, Garofalo L, Maysinger D, Piotte M, Cuello AC (1987) Neural plasticity of basal forebrain cholinergic neurons: effects of gangliosides. Neurosci Lett 80:80–84

    Article  CAS  PubMed  Google Scholar 

  • Stewart SS, Appel SH (1988) Trophic factors in neurologic disease. Annu Rev Med 39:193–201

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L (1980) Ganglioside designation. In: Structure and function of gangliosides. Springer

    Google Scholar 

  • Tettamanti G (1988) Towards the understanding of the physiological role of gangliosides. J New Trends Ganglioside Res Neurochem Neuroregenerative Aspects 14:625–646

    Google Scholar 

  • Venero JL, Knusel B, Beck KD, Hefti F (1994) Expression of neurotrophin and trk receptor genes in adult rats with fimbria transections: effect of intraventricular nerve growth factor and brain-derived neurotrophic factor administration. Neuroscience 59:797–815

    Article  CAS  PubMed  Google Scholar 

  • Wanleenuwat P, Iwanowski P, Kozubski W (2020) Antiganglioside antibodies in neurological diseases. J Neurol Sci 408:116576

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W, Bjorklund A, Gage FH (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci U S A 83:9231–9235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski HM, Wrzolek M (1988) Pathogenesis of amyloid formation in Alzheimer’s disease, Down’s syndrome and scrapie. Ciba Found Symp 135:224–238

    CAS  PubMed  Google Scholar 

  • Yates CM, Simpson J, Maloney AF, Gordon A, Reid AH (1980) Alzheimer-like cholinergic deficiency in Down syndrome. Lancet 2:979

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work narrated above was made historically possible by several UK, Canada, and US research-granting institutions, notably the UK MRC and Wellcome Trust, from Canada the MRC, CIHR, and the Alzheimer Society of Canada, and from the United States the Alzheimer Association and the NIH. Most importantly, the research narrated here would not have been possible without the creativity and dedication of my outstanding lab members or without the contributions from my outstanding external collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Claudio Cuello .

Editor information

Editors and Affiliations

Ethics declarations

I would like to dedicate these reflections about trophic responses not only to the memory of Rita Levi Montalcini and her stellar career, but also as a tribute to Mario Bunge’s legacy. He was one of the world’s greatest philosophers of his generation. A philosopher with formal and deep knowledge of the physical and biological sciences. A philosopher who understood synaptic plasticity and who strongly made the case that mind, consciousness, and all psychological responses were strictly governed by neuronal connections and biochemical brain events. I had the privilege of sharing with Mario many interminable scientific discussions and with him and his family many memorable events. I will sorely miss his loss as a dear friend and as an inspiring McGill colleague.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuello, A.C. (2021). Rita Levi-Montalcini, NGF Metabolism in Health and in the Alzheimer’s Pathology. In: Calzà, L., Aloe, L., Giardino, L. (eds) Recent Advances in NGF and Related Molecules. Advances in Experimental Medicine and Biology(), vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-74046-7_9

Download citation

Publish with us

Policies and ethics