Skip to main content

The Versatile Roles of Nerve Growth Factor in Neuronal Attraction, Odontoblast Differentiation, and Mineral Deposition in Human Teeth

  • Chapter
  • First Online:
Recent Advances in NGF and Related Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((CNNCSN,volume 1331))

Abstract

Nerve growth factor (NGF) is an important molecule for the development and differentiation of neuronal and non-neuronal cells. Here we analyze by immunohistochemistry the distribution of NGF in the dental pulp mesenchyme of embryonic and functional human teeth. In the dental pulp of both embryonic and healthy functional teeth, NGF is mainly expressed in the odontoblasts that are responsible for dentine formation, while in functional teeth NGF is also expressed in nerve fibers innervating the dental pulp. In injured teeth, NGF is expressed in the newly formed odontoblastic-like cells, which replace the dying odontoblasts. In these teeth, NGF expression is also upregulated in the intact odontoblasts, suggesting a role for this molecule in dental tissue repair. Similarly, in cultures of human dental pulp cells, NGF expression is strongly upregulated during their differentiation into odontoblasts as well as during the mineralization process. In microfluidic devices, release of NGF from cultured human dental pulp cells induced neuronal growth from trigeminal ganglia toward the NGF secreting cells. These results show that NGF is closely linked to the various functions of odontoblasts, including secretory and neuronal attraction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • About I, Mitsiadis TA (2001) Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models. Adv Dent Res 15:59–62

    Article  CAS  PubMed  Google Scholar 

  • Asaumi K, Nakanishi T, Asahara H, Inoue H, Takigawa M (2000) Expression of neurotrophins and their receptors (TRK) during fracture healing. Bone 26:625–633

    Article  CAS  PubMed  Google Scholar 

  • Benedetti M, Levi A, Chao MV (1993) Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci U S A 90:7859–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers MR (1990) Segregation of NGF receptor in sensory receptors, nerves and local cells of teeth and periodontium demonstrated by EM immunocytochemistry. J Neurocytol 19:765–775

    Article  CAS  PubMed  Google Scholar 

  • Byers MR, Schatteman GC, Bothwell M (1990) Multiple functions for NGF receptor in developing, aging and injured rat teeth are suggested by epithelial, mesenchymal and neural immunoreactivity. Development 109:461–471

    Article  CAS  PubMed  Google Scholar 

  • Byun JH, Lee JH, Choi YJ, Kim JR, Park BW (2008) Co-expression of nerve growth factor and p75NGFR in the inferior alveolar nerve after mandibular distraction osteogenesis. Int J Oral Maxillofac Surg 37:467–472

    Article  PubMed  Google Scholar 

  • Chesa PG, Rettig WJ, Thomson TM, Old LJ, Melamed MR (1988) Immunohistochemical analysis of nerve growth factor receptor expression in normal and malignant human tissues. J Histochem Cytochem 36:383–389

    Article  CAS  PubMed  Google Scholar 

  • Christensen LR, Mollgard K, Kjaer I, Janas MS (1993) Immunocytochemical demonstration of nerve growth factor receptor (NGF-R) in developing human fetal teeth. Anat Embryol (Berl) 188:247–255

    Article  CAS  Google Scholar 

  • Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth-stimulating factor isolated from sarcom as 37 and 180. Proc Natl Acad Sci U S A 40:1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AM, Lumsden AG, Slavkin HC, Burnstock G (1981) Influence of nerve growth factor on the embryonic mouse trigeminal ganglion in culture. Dev Neurosci 4:150–156

    Article  CAS  PubMed  Google Scholar 

  • Felasa Working Group on Revision of Guidelines for Health Monitoring of Rodents and Rabbits, Mahler Convenor M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, Raspa M (2014) FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim 48:178–192

    Google Scholar 

  • Grob PM, Ross AH, Koprowski H, Bothwell M (1985) Characterization of the human melanoma nerve growth factor receptor. J Biol Chem 260:8044–8049

    Article  CAS  PubMed  Google Scholar 

  • Ibanez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35:431–440

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Brockes JP (2012) Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35:691–699

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Mahal BA (2012) NGF—the TrkA to successful pain treatment. J Pain Res 5:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Aloe L (1980) Tropic, trophic, and transforming effects of nerve growth factor. Adv Biochem Psychopharmacol 25:3–15

    CAS  PubMed  Google Scholar 

  • Lewin G, Carter BD (2014) Neurotrophic factors. Springer, Berlin

    Book  Google Scholar 

  • Luukko K, Arumae U, Karavanov A, Moshnyakov M, Sainio K, Sariola H, Saarma M, Thesleff I (1997) Neurotrophin mRNA expression in the developing tooth suggests multiple roles in innervation and organogenesis. Dev Dyn 210:117–129

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Luukko K (1995) Neurotrophins in odontogenesis. Int J Dev Biol 39:195–202

    CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Pagella P (2016) Expression of nerve growth factor (NGF), TrkA, and p75(NTR) in developing human fetal teeth. Front Physiol 7:338

    PubMed  PubMed Central  Google Scholar 

  • Mitsiadis TA, Rahiotis C (2004) Parallels between tooth development and repair: conserved molecular mechanisms following carious and dental injury. J Dent Res 83:896–902

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Dicou E, Joffre A, Magloire H (1992) Immunohistochemical localization of nerve growth factor (NGF) and NGF receptor (NGF-R) in the developing first molar tooth of the rat. Differentiation 49:47–61

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Couble P, Dicou E, Rudkin BB, Magloire H (1993) Patterns of nerve growth factor (NGF), proNGF, and p75 NGF receptor expression in the rat incisor: comparison with expression in the molar. Differentiation 54:161–175

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Romeas A, Lendahl U, Sharpe PT, Farges JC (2003) Notch2 protein distribution in human teeth under normal and pathological conditions. Exp Cell Res 282:101–109

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, De Bari C, About I (2008) Apoptosis in developmental and repair-related human tooth remodeling: a view from the inside. Exp Cell Res 314:869–877

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Orsini G, Jimenez-Rojo L (2015) Stem cell-based approaches in dentistry. Eur Cell Mater 30:248–257

    Article  CAS  PubMed  Google Scholar 

  • Mitsiadis TA, Magloire H, Pagella P (2017) Nerve growth factor signalling in pathology and regeneration of human teeth. Sci Rep 7:1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238:120–132

    Article  CAS  PubMed  Google Scholar 

  • Nosrat I, Seiger A, Olson L, Nosrat CA (2002) Expression patterns of neurotrophic factor mRNAs in developing human teeth. Cell Tissue Res 310:177–187

    Article  CAS  PubMed  Google Scholar 

  • Orsini G, Pagella P, Mitsiadis TA (2018) Modern trends in dental medicine: an update for internists. Am J Med 131:1425–1430

    Article  PubMed  Google Scholar 

  • Pagella P, Mitsiadis TA (2020) Analysis of tooth innervation in microfluidic coculture devices. Methods Mol Biol 2155:99–106

    Article  CAS  PubMed  Google Scholar 

  • Pagella P, Jimenez-Rojo L, Mitsiadis TA (2014) Roles of innervation in developing and regenerating orofacial tissues. Cell Mol Life Sci 71:2241–2251

    Article  CAS  PubMed  Google Scholar 

  • Pagella P, Miran S, Mitsiadis T (2015) Analysis of developing tooth germ innervation using microfluidic co-culture devices. J Vis Exp e53114

    Google Scholar 

  • Pagella P, Caton J, Meisel CT, Mitsiadis TA (2020a) Ameloblastomas exhibit stem cell potential, possess neurotrophic properties, and establish connections with trigeminal neurons. Cells 9

    Google Scholar 

  • Pagella P, Miran S, Neto E, Martin I, Lamghari M, Mitsiadis TA (2020b) Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB J 34:5499–5511

    Article  CAS  PubMed  Google Scholar 

  • Pagella P, Cordiale A, Marconi GD, Trubiani O, Rasponi M, Mitsiadis TA (2021) Bioengineered tooth emulation systems for regenerative and pharmacological purposes. Eur Cell Mater 41:502–516

    Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AH, Grob P, Bothwell M, Elder DE, Ernst CS, Marano N, Ghrist BF, Slemp CC, Herlyn M, Atkinson B et al (1984) Characterization of nerve growth factor receptor in neural crest tumors using monoclonal antibodies. Proc Natl Acad Sci U S A 81:6681–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruit KG, Elliott JL, Osborne PA, Yan Q, Snider WD (1992) Selective dependence of mammalian dorsal root ganglion neurons on nerve growth factor during embryonic development. Neuron 8:573–587

    Article  CAS  PubMed  Google Scholar 

  • Tomellini E, Lagadec C, Polakowska R, Le Bourhis X (2014) Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci 71:2467–2481

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson RE, Li Z, Li Z, Minichiello L, Riddle RC, Venkatesan A, Clemens TL (2017) NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A 114:E3632–E3E41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugolini G, Marinelli S, Covaceuszach S, Cattaneo A, Pavone F (2007) The function neutralizing anti-TrkA antibody MNAC13 reduces inflammatory and neuropathic pain. Proc Natl Acad Sci U S A 104:2985–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA (2016) Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol 7:140

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimios A. Mitsiadis .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there are no conflicts of interest associated with this work.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitsiadis, T.A., Pagella, P. (2021). The Versatile Roles of Nerve Growth Factor in Neuronal Attraction, Odontoblast Differentiation, and Mineral Deposition in Human Teeth. In: Calzà, L., Aloe, L., Giardino, L. (eds) Recent Advances in NGF and Related Molecules. Advances in Experimental Medicine and Biology(), vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-74046-7_6

Download citation

Publish with us

Policies and ethics