Skip to main content

Dietary Fibers/Beta-Glucan and Cancer

Part of the Food Bioactive Ingredients book series (FBC)

Abstract

Cancer is a multicomplex disease brought about uncontrolled proliferation of cells with contribution of hereditary and environmental factors. Although there are more than 100 known types of cancer and standard approaches have been developed for certain types of cancer, cancer is also an individual disease. With the advances in technology, new therapeutic strategies are being developed in addition to available treatments. The pathways involved in signal transduction consist of protein kinases, MAP kinases, Ras/Raf/MEK/ERK, PI-3 kinase/protein kinase B and STAT proteins. Beta glucans are considered important activators of cellular immune function and macrophages which are the most important biological targets. The protective effects of beta glucan have been demonstrated in different infections caused by parasites, fungal and bacterial. Preclinic studies have shown substantial antitumor activity of glucans in different tumors. Moreover, it was demonstrated that beta-glucan has a powerful effect on the antibodies which naturally occurring in cancer. Beta-glucans have been used an adjunct therapy in clinical studies, primarily in the Far East and shown positive effects on patient survival and quality of life. In near future beta-glucan and the other nutraceuticals might be new vision on agriculture in the global economy.

Keywords

  • Cancer
  • Dietary fibers
  • Signaling
  • Mechanisms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-74035-1_21
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-74035-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2

References

  • Al Tuwaijri AS, Mahmoud AA, Al Mofleh IA, Al Khuwaitir SA (1987) Effect of glucan on Leishmania majör infection in BALB/c mice. J Med Microbiol 23:363–365

    PubMed  CrossRef  Google Scholar 

  • Asgari MM, Ray GT, Geier JL, Quesenberry CP (2017) Malignancy rates in a large cohort of patients with systemically treated psoriasis in a managed care population. J Am Acad Dermatol 76(4):632e638

    CrossRef  Google Scholar 

  • Baldassano S, Accardi G, Vasto S (2017) Beta-glucans and cancer: The influence of inflammation and gut peptide. Eur J Medi Chem 142:486–492

    CAS  CrossRef  Google Scholar 

  • Bashir KMI, Choi JS (2017) Clinical and physiological perspectives of β-Glucans: the past, present, and future. Int J Mol Sci 18(9):1906

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Berton G, Lowell CA (1999) Integrin signalling in neutrophils and macrophages. Cell Signal 11(9):621–635

    CAS  PubMed  CrossRef  Google Scholar 

  • Błaszczyk K, Gajewska M, Wilczak J, Kamola D, Majewska A, Harasym J (2019) Oral administration of oat beta-glucan preparations of different molecular weight results in regulation of genes connected with immune response in peripheral blood of rats with LPS-induced enteritis. Eur J Nutr 58:2859–2873

    PubMed  CrossRef  CAS  Google Scholar 

  • Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    CAS  PubMed  CrossRef  Google Scholar 

  • Bouike G, Nishitani Y, Shiomi H, Yoshida M, Azuma T, Hashimoto T, Kanazawa K, Mizuno M (2011) Oral treatment with extract of Agaricus blazei murill enhanced Th1 response through intestinal epithelial cells and suppressed OVA-sensitized allergy in mice. Evid Based Complement Altern Med 2011:532180

    CrossRef  Google Scholar 

  • Bowman T, Garcia R, Turkson J et al (2000) STATs in oncogenesis. Oncogene 19:2474–2488

    CAS  PubMed  CrossRef  Google Scholar 

  • Brown GD (2005) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6(1):33–43

    CrossRef  Google Scholar 

  • Brown GD, Williams DL (2009) 1,3-β-glucans in innate immunity: mammalian systems. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry, and biology of 1–3-β-glucans and related polysaccarides. Academic, New York, pp 579–619

    Google Scholar 

  • Chan WK, Law HK, Lin ZB, Lau YL, Chan GC (2007) Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley. Int Immunol 19:891e899

    CrossRef  CAS  Google Scholar 

  • Chan GC, Chan WK, Sze DM (2009) The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2:25

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chan AS, Jonas AB, Qiu X, Ottoson NR, Walsh RM, Gorden KB, Harrison B, Maimonis PJ, Leonardo SM, Ertelt KE et al (2016) Imprime PGG-mediated anti-cancer immune activation requires immune complex formation. PLoS One 11:e0165909

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chang F, Lee JT, Navolanic PM et al (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaung HC, Huang TC, Yu JH, Wu ML, Chung WB (2009) Immunomodulatory effects of beta-glucans on porcine alveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Vet Immunol Immunopathol 131:147–157

    CAS  PubMed  CrossRef  Google Scholar 

  • Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) sing. (an edible mushroom). Cancer Res 30:2776–2781

    CAS  PubMed  Google Scholar 

  • Cook JA, Holbrook TW (1983) Immunogenicity of soluble and particulate antigens from Leishmania donovani: effect of glucan as an adjuvant. Infect Immun 40:1038–1043

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Demir G, Klein HO, Mandel-Molinas N, Tuzuner N (2007) Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. Int Immunopharmacol 7:113–116. https://doi.org/10.1016/j.intimp.2006.08.011

    CAS  CrossRef  PubMed  Google Scholar 

  • Doğan AL, Güç D (2004) Signal transduction mechanisms and cancer. Hacettepe Medical Journal 35:34–42

    Google Scholar 

  • Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C (2015) Ve ark. The global burden of Cancer 2013. JAMA Oncol 1(4):505–527

    PubMed  CrossRef  Google Scholar 

  • Fortin O, Aguilar-Uscanga BR, Vu KD, Salmieri S, Lacroix M (2018) Effect of Saccharomyces boulardii cell wall extracts on colon cancer prevention in male F344 rats treated with 1,2-dimethylhydrazine. Nutr Cancer 70:632–642

    CAS  PubMed  CrossRef  Google Scholar 

  • Geller A, Shrestha R, Yan J (2019) Yeast-derived β-Glucan in Cancer: novel uses of a traditional therapeutic. Int J Mol Sci 20(15):3618

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan ASH, Magee AS, Danielson ME et al (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472(7344):471–475

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hong F, Hansen RD, Yan J, Allendorf DJ, Baran JT, Ostroff GR, Ross GD (2003) Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res 63:9023–9031

    CAS  PubMed  Google Scholar 

  • Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, Xing PX, Cheung NK, Ross GD (2004) Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol 173:797–806

    CAS  PubMed  CrossRef  Google Scholar 

  • https://clinicaltrials.gov/ct2/results?cond=&term=%CE%B2-Glucan+&type

  • Huang WJ (2015) Influences of gut hormones on hepatocellular carcinoma. Endocrinol Metab Synd 4:1

    Google Scholar 

  • Ikewaki N, Fujii N, Onaka T, Ikewaki S, Inoko H (2007) Immunological actions of Sophy beta-glucan (beta-1,3-1,6 glucan), currently available commercially as a health food supplement. Microbiol Immunol 51:861–873

    CAS  PubMed  CrossRef  Google Scholar 

  • Knudsen KE, Jensen BB, Hansen I (1993) Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in beta-D-glucan. Br J Nutr 70(2):537–556

    CAS  PubMed  CrossRef  Google Scholar 

  • Kobayashi H, Matsunaga K, Oguchi Y (1995) Antimetastatic effects of PSK (Krestin), a protein-bound polysaccharide obtained from basidiomycetes: an overview. Cancer Epidemiol Biomark Prev 4(3):275–281

    CAS  Google Scholar 

  • Kogan G. (2000) (1-3,1-6) Beta-D Glucans of yeast and Fungi and their biological activity. Studies in natural products chemistry, Vol 23, Elsevier 107-152. Studies in natural products chemistry. Vol 23, Bioactive Natural Products ISBN: 0-444-50606-3

    Google Scholar 

  • Kushner BH, Cheung IY, Modak S, Kramer K, Ragupathi G, Cheung NK (2014) Phase I trial of a bivalent gangliosides vaccine in combination with beta-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res 20:1375–1382. https://doi.org/10.1158/1078-0432.CCR-13-1012

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • LeBlanc BW, Albina JE, Reichner JS (2006) The effect of PGG- beta-glucan on neutrophil chemotaxis in vivo. J Leukoc Biol 79:667e675

    CrossRef  CAS  Google Scholar 

  • Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG (2006) Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin a in healthy volunteers. Clin Exp Immunol 143(1):65–69

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Li B, Allendorf DJ, Hansen R, Marroquin J, Ding C, Cramer DE, Yan J (2006) Yeast βglucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J Immunol 177(3):1661–1669

    CAS  PubMed  CrossRef  Google Scholar 

  • Liem AA, Chamberlain MP, Wolf CR, Thompson AM (2002) The role of signal transduction in cancer treatment and drug resistance. EJSO 28:679–684

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu J, Gunn L, Hansen R, Yan J (2009) Yeast-derived beta-glucan in combination with anti-tumor monoclonal antibody therapy in cancer. Recent Pat Anticancer Drug Discov 4:101–109

    CAS  PubMed  CrossRef  Google Scholar 

  • Maccalli C, Parmiani G, Ferrone S (2017) Immunomodulating and Immunoresistance properties of Cancer-initiating cells: implications for the clinical success of immunotherapy. Immunol Investig 46(3):221–238

    CAS  CrossRef  Google Scholar 

  • Malyarenko OS, Usoltseva RV, Zvyagintseva TN, Ermakova SP (2019) Laminaran from brown alga Dictyota dichotoma and its sulfated derivative as radioprotectors and radiosensitizers in melanoma therapy. Carbohydr Polym 206:539–547

    CAS  PubMed  CrossRef  Google Scholar 

  • Marakalala MJ, Kerrigan AM, Brown GD (2011) Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome 22(1–2):55–65

    CAS  PubMed  CrossRef  Google Scholar 

  • Mashiba H, Matsunaga K, Gojobori M (1979) Effect of immunochemotherapy with OK-432 and yeast cell wall on the activities of peritoneal macrophages of mice. Gann 70:687–692

    CAS  PubMed  Google Scholar 

  • Menaga D, Dhandapani R, Rajakumar S, Ayyasamy PM (2012) Beta-Glucans: a new source for human welfare. Int J Chem Pharm Sci 3(1):1–14

    CAS  Google Scholar 

  • Mo L, Chen Y, Li W, Guo S, Wang X, An H, Zhan Y (2017) Anti-tumor effects of (1/3)-b-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice. Int J Biol Macromol 95:385e392

    CrossRef  CAS  Google Scholar 

  • Muramatsu D, Iwai A, Aoki S, Uchiyama H, Kawata K, Nakayama Y, Nikawa Y, Kusano K, Okabe M, Miyazaki T (2012) β-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS One 7(7):e41399

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Netea MG, Maródi L (2010) Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol 31(9):346–353

    CAS  PubMed  CrossRef  Google Scholar 

  • Novak M, Vetvicka V (2008) Beta-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol 5(1):47–57

    CAS  PubMed  CrossRef  Google Scholar 

  • Novak M, Vetvicka V (2009) Glucans as biological response modifiers. Endocr Metab Immune Disord Drug Targets 9:67e75

    CrossRef  Google Scholar 

  • Oh-hashi F, Kataoka T, Tsukagoshi S (1978) Effect of combined use of anticancer drugs with a polysaccharide preparation, Krestin, on mouse leukemia P388. Gann 69:255–257

    CAS  PubMed  Google Scholar 

  • Pavlopoulou A, Spandidos DA, Michalopoulos I (2015) Human cancer databases (review). Oncol Rep 33(1):3–18

    CAS  PubMed  CrossRef  Google Scholar 

  • Pawson T (2002) Regulation and targets of receptor tyrosine kinases. Eur J Cancer 38(Suppl 5):3–10

    CrossRef  Google Scholar 

  • Pawson T, Raina M, Nash P (2002) Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett 513:2–10

    CAS  PubMed  CrossRef  Google Scholar 

  • Peterson DM (1991) Genotype and environment effects on oat beta-glucan concentration. Crop Sci 31:1517e1520

    Google Scholar 

  • Platanias LC (2003) Map kinase signaling pathways and hematologic malignancies. Blood 101:4667–4679

    CAS  PubMed  CrossRef  Google Scholar 

  • Prasad MS, Madhu CH, Venkateshwalu G, Sabath M (2012) Quantitative evaluation of carbohydrate levels in different natural foodstuffs by UVevisible spectrophometer. Asian J Pharm Anal 2:10e11

    Google Scholar 

  • Queiroz LS, Nascimento MS, Cruz AK, Castro AJ, Moura Mde F et al (2010) Glucans from the Caripia montagnei mushroom present anti-inflammatory activity. Int Immunopharmacol 10:34–42

    CAS  PubMed  CrossRef  Google Scholar 

  • Rao KS, Suryaprakash V, Senthilkumar R, Preethy S, Katoh S, Ikewaki N, Abraham SJ (2020) Role of immune dysregulation in increased mortality among a specific subset of covid-19 patients and immune-enhancement strategies for combatting through nutritional supplements. Front Immunol 11:1548

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J (1999) Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 42:61–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Schepetkin IA, Quinn MT (2006) Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 6:317–333

    CAS  PubMed  CrossRef  Google Scholar 

  • Schulz WA (2007) Molecular biology of human cancers. Springer, The Netherlands

    Google Scholar 

  • Shear MJ, Turner FC, Perrault A, Shovelton T (1943) Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate. J Natl Cancer Inst 4:81–97

    CAS  Google Scholar 

  • Shimizu K, Watanabe S, Watanabe S, Matsuda K, Suga T et al (2009) Efficacy of oral administered superfine dispersed lentinan for advanced pancreatic cancer. Hepato-Gastroenterology 56:240–244

    CAS  PubMed  Google Scholar 

  • Sugiyama A, Hata S, Suzuki K, Yoshida E, Nakano R et al (2010) Oral administration of paramylon, a beta-1,3-D-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J Vet Med Sci 72:755–763

    CAS  PubMed  CrossRef  Google Scholar 

  • Synytsya A, Novak M (2014) Structural analysis of glucans. Ann Transl Med 2(2):17

    PubMed  PubMed Central  Google Scholar 

  • Thomas M, Sadjadian P, Kollmeier J, Lowe J, Mattson P, Trout JR, Gargano M, Patchen ML, Walsh R, Beliveau M, Marier JF, Bose N, Gorden K, Schneller F 3rd (2017) A randomized, open-label, multicenter, phase II study evaluating the efficacy and safety of BTH1677 (1,3-1,6 beta glucan; Imprime PGG) in combination with cetuximab and chemotherapy in patients with advanced non-small cell lung cancer. Investig New Drugs 35(3):345e358

    CrossRef  CAS  Google Scholar 

  • Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6:157

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Vetvicka V (2013) Syntetic oligosacharides- clinical application in cancer therapy. Anti-Cancer Agents Med Chem 13:720–724

    CAS  CrossRef  Google Scholar 

  • Vetvicka V, Vetvickova J (2007) Physiological effects of different types of beta-glucan. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 151:225–231

    CAS  PubMed  CrossRef  Google Scholar 

  • Vetvicka V, Vetvickova J (2012) β 1, 3-Glucan in Cancer Treatment. Am J Immunol 8(2):38–43

    CAS  CrossRef  Google Scholar 

  • Vetvicka V, Dvorak B, Vetvickova J, Richter J, Krizan J, Sima P, Yvin JC (2007) Orally administered marine (1-->3)-beta-D-glucan Phycarine stimulates both humoral and cellular immunity. Int J Biol Macromol 40(4):291–298

    CAS  PubMed  CrossRef  Google Scholar 

  • Vos A, M'Rabet L, Stahl B, Boehm G, Garssen J (2007) Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev Immunol 27(2):97–140

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang H, Weening D, Jonkers E, Boer T, Stellaard F, Small AC, Preston T, Vonk RJ, Priebe MG (2008) A curve fitting approach to estimate the extent of fermentation of indigestible carbohydrates. Eur J Clin Investig 38(11):863–868

    CAS  CrossRef  Google Scholar 

  • Wayteck L, Breckpot K, Demeester J, De Smedt SC (2014) Raemdonck K (2014) A personalized view on Cancer immunotherapy. Cancer Lett. 352:113–125

    CAS  PubMed  CrossRef  Google Scholar 

  • Xu H, Zou S, Xu X (2017) The beta-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers. Oncotarget 8:86693–86709

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yang Y (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 125:3335–3337

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yang J, Tu J, Liu H, Wen L, Jiang Y, Yang B (2019) Identification of an immunostimulatory polysaccharide in banana. Food Chem 277:46–53

    CAS  PubMed  CrossRef  Google Scholar 

  • Yoon TJ, Koppula S, Lee KH (2013) The effects of β-glucans on cancer metastasis. Anti Cancer Agents Med Chem 13(5):699–708

    CAS  CrossRef  Google Scholar 

  • Zhang M, Yan L, Kim JA (2015) Modulating mammary tumor growth, metastasis and immunosuppression by siRNA-induced MIF reduction in tumor microenvironment. Cancer Gene Ther 22:463–474

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhou LD, Zhang QH, Zhang Y, Liu J, Cao YM (2009) The shiitake mushroom-derived immuno-stimulant lentinan protects against murine malaria blood-stage infection by evoking adaptive immune-responses. Int Immunopharmacol 9:455–462

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Necla Benlier or E. Ilker Saygili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Benlier, N., Sayin, S., Cetin, Z., Ozkur, M., Saygili, E.I. (2021). Dietary Fibers/Beta-Glucan and Cancer. In: Jafari, S.M., Nabavi, S.M., Silva, A.S. (eds) Nutraceuticals and Cancer Signaling. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-74035-1_21

Download citation