Skip to main content

Small Cell Lung Cancer: Biology Advances

  • Chapter
  • First Online:
Lung Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 765 Accesses

Abstract

Small-cell lung cancer (SCLC) represents about 13% of all lung cancers and is hallmarked by early metastatic behavior and poor prognosis. Recently immune checkpoint inhibitors have been approved for use in combination with etoposide plus a platinum agent as initial therapy for patients extensive stage SCLC; with the triplet regimen, the median overall survival is approximately 12 months. Over the past 4 years, several agents, including immune checkpoint inhibitors, have also received FDA-approval for SCLC in the relapsed setting, based primarily on objective response rates or duration of response, but not improvement in survival. Analyses of SCLC models have identified molecular subtypes based on the relative expression of key transcriptional regulators. These analyses are leading to a better understanding of SCLC biology and may help identify distinct therapeutic vulnerabilities among subsets of this disease. Ideally, these investigations will lead to more personalized therapeutic approaches and better outcomes for patients diagnosed with this aggressive cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Ready N, Farago AF, de Braud F, Atmaca A, Hellmann MD, Schneider JG et al (2019) Third-line nivolumab monotherapy in recurrent SCLC: CheckMate 032. J Thorac Oncol 14(2):237–244. https://doi.org/10.1016/j.jtho.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  3. Antonia SJ, Lopez-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP et al (2016) Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 17(7):883–895. https://doi.org/10.1016/S1470-2045(16)30098-5

    Article  CAS  PubMed  Google Scholar 

  4. Chung HC, Lopez-Martin JA, Kao SC-H, Miller WH, Ros W, Gao B et al (2018) Phase 2 study of pembrolizumab in advanced small-cell lung cancer (SCLC): KEYNOTE-158. J Clin Oncol 36(15_suppl):8506. https://doi.org/10.1200/JCO.2018.36.15_suppl.8506

    Article  Google Scholar 

  5. Horn L, Mansfield AS, Szczesna A, Havel L, Krzakowski M, Hochmair MJ et al (2018) First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung Cancer. N Engl J Med 379(23):2220–2229. https://doi.org/10.1056/NEJMoa1809064

    Article  CAS  PubMed  Google Scholar 

  6. Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D et al (2019) Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394(10212):1929–1939. https://doi.org/10.1016/S0140-6736(19)32222-6

    Article  CAS  PubMed  Google Scholar 

  7. Trigo J, Subbiah V, Besse B, Moreno V, Lopez R, Sala MA et al (2020) Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial. Lancet Oncol 21(5):645–654. https://doi.org/10.1016/S1470-2045(20)30068-1

    Article  CAS  PubMed  Google Scholar 

  8. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A (2003) Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4(3):181–189

    Article  CAS  Google Scholar 

  9. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524(7563):47–53. https://doi.org/10.1038/nature14664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS et al (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44(10):1111–1116. https://doi.org/10.1038/ng.2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J et al (2012) Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2(9):798–811. https://doi.org/10.1158/2159-8290.CD-12-0112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J et al (2019) Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19(5):289–297. https://doi.org/10.1038/s41568-019-0133-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simbulan-Rosenthal CM, Rosenthal DS, Boulares AH, Hickey RJ, Malkas LH, Coll JM et al (1998) Regulation of the expression or recruitment of components of the DNA synthesome by poly(ADP-ribose) polymerase. Biochemistry 37(26):9363–9370. https://doi.org/10.1021/bi9731089

    Article  CAS  PubMed  Google Scholar 

  14. Murai J, Huang S-YN, Das BB, Renaud A, Zhang Y, Doroshow JH et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardnell RJ, Byers LA (2014) Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer--response. Clin Cancer Res 20(8):2237. https://doi.org/10.1158/1078-0432.CCR-13-3391

    Article  PubMed  PubMed Central  Google Scholar 

  16. Laird JH, Lok BH, Ma J, Bell A, de Stanchina E, Poirier JT et al (2018) Talazoparib is a potent radiosensitizer in small cell lung cancer cell lines and xenografts. Clin Cancer Res 24(20):5143–5152. https://doi.org/10.1158/1078-0432.CCR-18-0401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Owonikoko TK, Dahlberg SE, Sica GL, Wagner LI, Wade JL, Srkalovic G et al (2018) Randomized phase II trial of cisplatin and etoposide in combination with veliparib or placebo for extensive-stage small-cell lung cancer: ECOG-ACRIN 2511 study. J Clin Oncol 37(3):222–229. https://doi.org/10.1200/JCO.18.00264

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pietanza MC, Waqar SN, Krug LM, Dowlati A, Hann CL, Chiappori A et al (2018) Randomized, double-blind, phase II study of temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol 36(23):2386–2394. https://doi.org/10.1200/JCO.2018.77.7672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farago AF, Yeap BY, Stanzione M, Hung YP, Heist RS, Marcoux JP et al (2019) Combination olaparib and temozolomide in relapsed small-cell lung cancer. Cancer Discov 9(10):1372–1387. https://doi.org/10.1158/2159-8290.CD-19-0582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Bono J, Ramanathan RK, Mina L, Chugh R, Glaspy J, Rafii S et al (2017) Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov 7(6):620. https://doi.org/10.1158/2159-8290.CD-16-1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allison Stewart C, Tong P, Cardnell RJ, Sen T, Li L, Gay CM et al (2017) Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget 8(17):28575–28587. https://doi.org/10.18632/oncotarget.15338

    Article  CAS  PubMed  Google Scholar 

  22. Lallo A, Frese KK, Morrow C, Szczepaniak Sloane R, Gulati S, Schenk MW et al (2018) The combination of the PARP inhibitor olaparib and the Wee1 inhibitor AZD1775 as a new therapeutic option for small cell lung cancer. Clin Cancer Res 24(20):5153–5164. https://doi.org/10.1158/1078-0432.CCR-17-2805

    Article  CAS  PubMed  Google Scholar 

  23. Park S, Shim J, Jung HA, Sun J-M, Lee S-H, Park W-Y et al (2019) Biomarker driven phase II umbrella trial study of AZD1775, AZD2014, AZD2811 monotherapy in relapsed small cell lung cancer. J Clin Oncol 37(15_suppl):8514. https://doi.org/10.1200/JCO.2019.37.15_suppl.8514

    Article  Google Scholar 

  24. Ma CX, Janetka JW, Piwnica-Worms H (2011) Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17(2):88–96. https://doi.org/10.1016/j.molmed.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  25. Sen T, Tong P, Stewart CA, Cristea S, Valliani A, Shames DS et al (2017) CHK1 inhibition in small-cell lung cancer produces single-agent activity in biomarker-defined disease subsets and combination activity with cisplatin or olaparib. Cancer Res 77(14):3870–3884. https://doi.org/10.1158/0008-5472.CAN-16-3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen J, Zhao W, Ju Z, Wang L, Peng Y, Labrie M et al (2019) PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res 79(2):311–319. https://doi.org/10.1158/0008-5472.CAN-18-1003

    Article  CAS  PubMed  Google Scholar 

  27. Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J et al (2019) Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 9(5):646–661. https://doi.org/10.1158/2159-8290.CD-18-1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas A, Vilimas R, Trindade C, Erwin-Cohen R, Roper N, Xi L et al (2019) Durvalumab in combination with olaparib in patients with relapsed SCLC: results from a phase II study. J Thorac Oncol 14(8):1447–1457. https://doi.org/10.1016/j.jtho.2019.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I, Ballieu PM et al (2017) MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31(2):270–285. https://doi.org/10.1016/j.ccell.2016.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dammert MA, Bragelmann J, Olsen RR, Bohm S, Monhasery N, Whitney CP et al (2019) MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun 10(1):3485. https://doi.org/10.1038/s41467-019-11371-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drapkin BJ, George J, Christensen CL, Mino-Kenudson M, Dries R, Sundaresan T et al (2018) Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Discov 8(5):600–615. https://doi.org/10.1158/2159-8290.CD-17-0935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grunblatt E, Wu N, Zhang H, Liu X, Norton JP, Ohol Y et al (2020) MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev 34(17–18):1210–1226. https://doi.org/10.1101/gad.340133.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McKeown MR, Bradner JE (2014) Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 4(10):a014266. https://doi.org/10.1101/cshperspect.a014266

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sos ML, Dietlein F, Peifer M, Schöttle J, Balke-Want H, Müller C et al (2012) A framework for identification of actionable cancer genome dependencies in small cell lung cancer. Proc Natl Acad Sci U S A 109(42):17034–17039. https://doi.org/10.1073/pnas.1207310109

    Article  PubMed  PubMed Central  Google Scholar 

  35. Melichar B, Adenis A, Lockhart AC, Bennouna J, Dees EC, Kayaleh O et al (2015) Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol 16(4):395–405. https://doi.org/10.1016/S1470-2045(15)70051-3

    Article  CAS  PubMed  Google Scholar 

  36. Owonikoko TK, Niu H, Nackaerts K, Csoszi T, Ostoros G, Mark Z et al (2020) Randomized phase II study of paclitaxel plus alisertib versus paclitaxel plus placebo as second-line therapy for SCLC: primary and correlative biomarker analyses. J Thorac Oncol 15(2):274–287. https://doi.org/10.1016/j.jtho.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  37. Huang F, Ni M, Chalishazar MD, Huffman KE, Kim J, Cai L et al (2018) Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab 28(3):369–382.e365. https://doi.org/10.1016/j.cmet.2018.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chalishazar MD, Wait SJ, Huang F, Ireland AS, Mukhopadhyay A, Lee Y et al (2019) MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin Cancer Res 25(16):5107. https://doi.org/10.1158/1078-0432.CCR-18-4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim JS, Ibaseta A, Fischer MM, Cancilla B, O’Young G, Cristea S et al (2017) Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 545(7654):360–364. https://doi.org/10.1038/nature22323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K et al (2015) A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med 7(302):302ra136. https://doi.org/10.1126/scitranslmed.aac9459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS et al (2017) Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 18(1):42–51. https://doi.org/10.1016/S1470-2045(16)30565-4

    Article  CAS  PubMed  Google Scholar 

  42. Hann C, Burns T, Dowlati A, Morgensztern D, Koch M, Chang Y et al (2019) A phase 1 study evaluating rovalpituzumab tesirine (ROVA-T) in frontline treatment of patients (pts) with extensive stage small cell lung cancer (ES SCLC). Ann Oncol 30(suppl_5):v710–v717. https://doi.org/10.1093/annonc/mdz264

    Article  Google Scholar 

  43. AbbVie Rova-T Press Release, 8/29/19

    Google Scholar 

  44. Baeuerle PA, Kufer P, Bargou R (2009) BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 11(1):22–30

    CAS  PubMed  Google Scholar 

  45. Giffin M, Cooke K, Lobenhofer E, Friedrich M, Raum T, Coxon A (2018) P3.12–03 targeting DLL3 with AMG 757, a BiTE® antibody construct, and AMG 119, a CAR-T, for the treatment of SCLC. J Thorac Oncol 13(10):S971. https://doi.org/10.1016/j.jtho.2018.08.1826

    Article  Google Scholar 

  46. Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ et al (2017) Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res 77(14):3931–3941. https://doi.org/10.1158/0008-5472.CAN-17-0299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ben-Ezra JM, Kornstein MJ, Grimes MM, Krystal G (1994) Small cell carcinomas of the lung express the Bcl-2 protein. Am J Pathol 145(5):1036–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang SX, Kameya T, Sato Y, Yanase N, Yoshimura H, Kodama T (1996) Bcl-2 protein expression in lung cancer and close correlation with neuroendocrine differentiation. Am J Pathol 148(3):837–846

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zangemeister-Wittke U, Schenker T, Luedke GH, Stahel RA (1998) Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br J Cancer 78(8):1035–1042

    Article  CAS  Google Scholar 

  50. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. nature03579 [pii]. https://doi.org/10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  51. Tahir SK, Yang X, Anderson MG, Morgan-Lappe SE, Sarthy AV, Chen J et al (2007) Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res 67(3):1176–1183. https://doi.org/10.1158/0008-5472.CAN-06-2203

    Article  CAS  PubMed  Google Scholar 

  52. Hann CL, Daniel VC, Sugar EA, Dobromilskaya I, Murphy SC, Cope L et al (2008) Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res 68(7):2321–2328. https://doi.org/10.1158/0008-5472.CAN-07-5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rudin CM, Otterson GA, Mauer AM, Villalona-Calero MA, Tomek R, Prange B et al (2002) A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann Oncol 13(4):539–545

    Article  CAS  Google Scholar 

  54. Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D et al (2011) Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 29(7):909–916. https://doi.org/10.1200/JCO.2010.31.6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR et al (2012) Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res 18(11):3163–3169. https://doi.org/10.1158/1078-0432.CCR-11-3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lochmann TL, Floros KV, Naseri M, Powell KM, Cook W, March RJ et al (2018) Venetoclax is effective in small-cell lung cancers with high BCL-2 expression. Clin Cancer Res 24(2):360–369. https://doi.org/10.1158/1078-0432.CCR-17-1606

    Article  CAS  PubMed  Google Scholar 

  57. Augert A, Zhang Q, Bates B, Cui M, Wang X, Wildey G et al (2017) Small cell lung cancer exhibits frequent inactivating mutations in the histone methyltransferase KMT2D/MLL2: CALGB 151111 (alliance). J Thorac Oncol 12(4):704–713. https://doi.org/10.1016/j.jtho.2016.12.011

    Article  PubMed  Google Scholar 

  58. Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32(4):503–518. https://doi.org/10.1016/j.molcel.2008.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poirier JT, Gardner EE, Connis N, Moreira AL, de Stanchina E, Hann CL et al (2015) DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene 34(48):5869–5878. https://doi.org/10.1038/onc.2015.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hubaux R, Thu KL, Coe BP, MacAulay C, Lam S, Lam WL (2013) EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. J Thorac Oncol 8(8):1102–1106. https://doi.org/10.1097/JTO.0b013e318298762f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK et al (2017) Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell 31(2):286–299. https://doi.org/10.1016/j.ccell.2017.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. https://doi.org/10.1016/j.cell.2004.12.012

    Article  CAS  Google Scholar 

  63. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS et al (2015) A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28(1):57–69. https://doi.org/10.1016/j.ccell.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  64. Augert A, Eastwood E, Ibrahim AH, Wu N, Grunblatt E, Basom R et al (2019) Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal 12(567):eaau2922. https://doi.org/10.1126/scisignal.aau2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ott PA, Elez E, Hiret S, Kim D-W, Morosky A, Saraf S et al (2017) Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J Clin Oncol 35(34):3823–3829. https://doi.org/10.1200/JCO.2017.72.5069

    Article  CAS  PubMed  Google Scholar 

  66. Chung HC, Piha-Paul SA, Lopez-Martin J, Schellens JHM, Kao S, Miller WH et al (2020) Pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic SCLC: results from the KEYNOTE-028 and KEYNOTE-158 studies. J Thorac Oncol 15(4):618–627. https://doi.org/10.1016/j.jtho.2019.12.109

    Article  CAS  PubMed  Google Scholar 

  67. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A et al (2019) Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non–small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 37(7):537–546. https://doi.org/10.1200/JCO.18.00149

    Article  CAS  PubMed  Google Scholar 

  68. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR et al (2017) Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 18(1):31–41. https://doi.org/10.1016/S1470-2045(16)30624-6

    Article  CAS  PubMed  Google Scholar 

  69. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21(10):1353–1365. https://doi.org/10.1016/S1470-2045(20)30445-9

    Article  CAS  PubMed  Google Scholar 

  70. Matozaki T, Murata Y, Okazawa H, Ohnishi H (2009) Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 19(2):72–80. https://doi.org/10.1016/j.tcb.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  71. Weiskopf K, Jahchan NS, Schnorr PJ, Cristea S, Ring AM, Maute RL et al (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 126(7):2610–2620. https://doi.org/10.1172/jci81603

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gazdar AF, Carney DN, Nau MM, Minna JD (1985) Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res 45(6):2924–2930

    CAS  PubMed  Google Scholar 

  73. Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M et al (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386(6627):852–855. https://doi.org/10.1038/386852a0

    Article  CAS  PubMed  Google Scholar 

  74. Neptune ER, Podowski M, Calvi C, Cho JH, Garcia JG, Tuder R et al (2008) Targeted disruption of NeuroD, a proneural basic helix-loop-helix factor, impairs distal lung formation and neuroendocrine morphology in the neonatal lung. J Biol Chem 283(30):21160–21169. https://doi.org/10.1074/jbc.M708692200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK et al (2016) ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep 16(5):1259–1272. https://doi.org/10.1016/j.celrep.2016.06.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL et al (2010) Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res 70(10):3877–3883

    Article  CAS  Google Scholar 

  77. Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth A, Daneshbod Y et al (2020) Small cell lung carcinoma subtypes defined by ASCL1, NEUROD1, POU2F3 and YAP1: comprehensive immunohistochemical and histopathologic characterization. J Thorac Oncol 15(12):1823–1835. https://doi.org/10.1016/j.jtho.2020.09.009

    Article  CAS  PubMed  Google Scholar 

  78. Huang Y-H, Klingbeil O, He X-Y, Wu XS, Arun G, Lu B et al (2018) POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev 32(13–14):915–928. https://doi.org/10.1101/gad.314815.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McColl K, Wildey G, Sakre N, Lipka MB, Behtaj M, Kresak A et al (2017) Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung cancer. Oncotarget 8(43):73745–73756. https://doi.org/10.18632/oncotarget.20572

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Hann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hann, C.L. (2021). Small Cell Lung Cancer: Biology Advances. In: Chiang, A.C., Herbst, R.S. (eds) Lung Cancer. Current Cancer Research. Humana, Cham. https://doi.org/10.1007/978-3-030-74028-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74028-3_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-74027-6

  • Online ISBN: 978-3-030-74028-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics