Skip to main content

Tumor Microenvironment: Immune Effector and Suppressor Imbalance

  • Chapter
  • First Online:
Lung Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 816 Accesses

Abstract

Despite the broad clinical use of immune checkpoint inhibitors (ICI), prominent questions remain relative to their mechanism of action and optimal patient selection strategies. Enhanced understanding of tumor/immune cell interactions in the tumor microenvironment (TME) and identification of dominant immune evasion pathways in the context of individual patients will be required to expand the impact of immunostimulatory anti-cancer therapies. This chapter summarizes current evidence about immune stimulatory and suppressor signals in the TME focusing on their dynamic interplay in human non-small cell lung cancer, expected tumor tissue/cell location and potential for therapeutic targeting. We also discuss the role of molecular TME immune features as biomarkers and their potential impact in future cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ascierto PA et al (2019) Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with Nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol 5:187–194. https://doi.org/10.1001/jamaoncol.2018.4514

    Article  PubMed  Google Scholar 

  3. Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  4. Wolchok JD et al (2017) Overall survival with combined Nivolumab and Ipilimumab in advanced melanoma. N Engl J Med 377:1345–1356. https://doi.org/10.1056/NEJMoa1709684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8. https://doi.org/10.1186/s40425-018-0316-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berghmans T, Durieux V, Hendriks LEL, Dingemans AM (2020) Immunotherapy: from advanced NSCLC to early stages, an evolving concept. Front Med (Lausanne) 7:90. https://doi.org/10.3389/fmed.2020.00090

    Article  Google Scholar 

  7. Schizas D et al (2020) Immunotherapy for pancreatic cancer: a 2020 update. Cancer Treat Rev 86:102016. https://doi.org/10.1016/j.ctrv.2020.102016

    Article  CAS  PubMed  Google Scholar 

  8. Golshani G, Zhang Y (2020) Advances in immunotherapy for colorectal cancer: a review. Ther Adv Gastroenterol 13:1756284820917527. https://doi.org/10.1177/1756284820917527

    Article  CAS  Google Scholar 

  9. Vitkin N, Nersesian S, Siemens DR, Koti M (2019) The tumor immune contexture of prostate Cancer. Front Immunol 10:603. https://doi.org/10.3389/fimmu.2019.00603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia-Diaz A et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201. https://doi.org/10.1016/j.celrep.2017.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Altan M et al (2017) B7-H3 expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes. Clin Cancer Res 23:5202–5209. https://doi.org/10.1158/1078-0432.CCR-16-3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carvajal-Hausdorf D et al (2019) Expression and clinical significance of PD-L1, B7-H3, B7-H4 and TILs in human small cell lung Cancer (SCLC). J Immunother Cancer 7:65. https://doi.org/10.1186/s40425-019-0540-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ni L, Dong C (2017) New B7 family checkpoints in human cancers. Mol Cancer Ther 16:1203–1211. https://doi.org/10.1158/1535-7163.MCT-16-0761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schalper KA et al (2017) Differential expression and significance of PD-L1, IDO-1, and B7-H4 in human lung cancer. Clin Cancer Res 23:370–378. https://doi.org/10.1158/1078-0432.CCR-16-0150

    Article  CAS  PubMed  Google Scholar 

  15. Zang X et al (2003) B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci U S A 100:10388–10392. https://doi.org/10.1073/pnas.1434299100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Villarroel-Espindola F et al (2018) Spatially resolved and quantitative analysis of VISTA/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin Cancer Res 24:1562–1573. https://doi.org/10.1158/1078-0432.CCR-17-2542

    Article  CAS  PubMed  Google Scholar 

  17. Johnston RJ et al (2019) VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574:565–570. https://doi.org/10.1038/s41586-019-1674-5

    Article  CAS  PubMed  Google Scholar 

  18. Liu M et al (2018) Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol 11:100. https://doi.org/10.1186/s13045-018-0644-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leone RD, Emens LA (2018) Targeting adenosine for cancer immunotherapy. J Immunother Cancer 6:57. https://doi.org/10.1186/s40425-018-0360-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tsukamoto H et al (2018) Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci 109:523–530. https://doi.org/10.1111/cas.13433

    Article  CAS  PubMed  Google Scholar 

  21. David JM, Dominguez C, Hamilton DH, Palena C (2016) The IL-8/IL-8R Axis: a double agent in tumor immune resistance. Vaccines (Basel) 4. https://doi.org/10.3390/vaccines4030022

  22. Fisher DT, Appenheimer MM, Evans SS (2014) The two faces of IL-6 in the tumor microenvironment. Semin Immunol 26:38–47. https://doi.org/10.1016/j.smim.2014.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schalper KA et al (2020) Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med 26:688–692. https://doi.org/10.1038/s41591-020-0856-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teijeira A et al (2020) CXCR1 and CXCR2 Chemokine Receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52:856–871 e858. https://doi.org/10.1016/j.immuni.2020.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Leone P et al (2013) MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 105:1172–1187. https://doi.org/10.1093/jnci/djt184

    Article  CAS  PubMed  Google Scholar 

  26. Gettinger S et al (2017) Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 7:1420–1435. https://doi.org/10.1158/2159-8290.CD-17-0593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375:819–829. https://doi.org/10.1056/NEJMoa1604958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sade-Feldman M et al (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8:1136. https://doi.org/10.1038/s41467-017-01062-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seliger B, Ferrone S (2020) HLA class I antigen processing machinery defects in cancer cells-frequency, functional significance, and clinical relevance with special emphasis on their role in T cell-based immunotherapy of malignant disease. Methods Mol Biol 2055:325–350. https://doi.org/10.1007/978-1-4939-9773-2_15

    Article  CAS  PubMed  Google Scholar 

  30. Trujillo JA et al (2019) Secondary resistance to immunotherapy associated with beta-catenin pathway activation or PTEN loss in metastatic melanoma. J Immunother Cancer 7:295. https://doi.org/10.1186/s40425-019-0780-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF (2019) WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res 25:3074–3083. https://doi.org/10.1158/1078-0432.CCR-18-1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461–1473. https://doi.org/10.1038/onc.2016.304

    Article  CAS  PubMed  Google Scholar 

  33. Blons H, Garinet S, Laurent-Puig P, Oudart JB (2019) Molecular markers and prediction of response to immunotherapy in non-small cell lung cancer, an update. J Thorac Dis 11:S25–S36. https://doi.org/10.21037/jtd.2018.12.48

    Article  PubMed  PubMed Central  Google Scholar 

  34. Skoulidis F et al (2018) STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 8:822–835. https://doi.org/10.1158/2159-8290.CD-18-0099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gstalder C et al (2020) Inactivation of Fbxw7 impairs dsRNA sensing and confers resistance to PD-1 blockade. Cancer Discov 10:1296–1311. https://doi.org/10.1158/2159-8290.CD-19-1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taube JM et al (2018) Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31:214–234. https://doi.org/10.1038/modpathol.2017.156

    Article  CAS  PubMed  Google Scholar 

  37. Jiang T et al (2019) Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 12:93. https://doi.org/10.1186/s13045-019-0787-5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sade-Feldman M et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175:998–1013 e1020. https://doi.org/10.1016/j.cell.2018.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499. https://doi.org/10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Philip M, Schietinger A (2019) Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections. Curr Opin Immunol 58:98–103. https://doi.org/10.1016/j.coi.2019.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Datar I et al (2019) Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin Cancer Res 25:4663–4673. https://doi.org/10.1158/1078-0432.CCR-18-4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gettinger SN et al (2018) A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 9:3196. https://doi.org/10.1038/s41467-018-05032-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  44. Ganguli P, Sarkar RR (2018) Exploring immuno-regulatory mechanisms in the tumor microenvironment: model and design of protocols for cancer remission. PLoS One 13:e0203030. https://doi.org/10.1371/journal.pone.0203030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rivera Vargas T, Humblin E, Vegran F, Ghiringhelli F, Apetoh L (2017) TH9 cells in anti-tumor immunity. Semin Immunopathol 39:39–46. https://doi.org/10.1007/s00281-016-0599-4

    Article  CAS  PubMed  Google Scholar 

  46. Salazar Y et al (2020) Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. J Clin Invest 130:3560–3575. https://doi.org/10.1172/JCI124037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen T et al (2020) Th9 cell differentiation and its dual effects in tumor development. Front Immunol 11:1026. https://doi.org/10.3389/fimmu.2020.01026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voigt C et al (2017) Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci U S A 114:12994–12999. https://doi.org/10.1073/pnas.1705165114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng KW et al (2018) Somatic mutation-associated T follicular helper cell elevation in lung adenocarcinoma. Onco Targets Ther 7:e1504728. https://doi.org/10.1080/2162402X.2018.1504728

    Article  Google Scholar 

  50. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  51. Kotsakis A et al (2016) Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients. Sci Rep 6:39247. https://doi.org/10.1038/srep39247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Neeve SC, Robinson BW, Fear VS (2019) The role and therapeutic implications of T cells in cancer of the lung. Clin Transl Immunol 8:e1076. https://doi.org/10.1002/cti2.1076

    Article  Google Scholar 

  53. Petersen RP et al (2006) Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107:2866–2872. https://doi.org/10.1002/cncr.22282

    Article  PubMed  Google Scholar 

  54. Shimizu K et al (2010) Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 5:585–590. https://doi.org/10.1097/JTO.0b013e3181d60fd7

    Article  PubMed  Google Scholar 

  55. Wang SS et al (2019) Tumor-infiltrating B cells: their role and application in anti-tumor immunity in lung cancer. Cell Mol Immunol 16:6–18. https://doi.org/10.1038/s41423-018-0027-x

    Article  CAS  PubMed  Google Scholar 

  56. Sautes-Fridman C et al (2016) Tertiary lymphoid structures in cancers: prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol 7:407. https://doi.org/10.3389/fimmu.2016.00407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schalper KA et al (2015) Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst 107. https://doi.org/10.1093/jnci/dju435

  58. Yuen GJ, Demissie E, Pillai S (2016) B lymphocytes and cancer: a love-hate relationship. Trends Cancer 2:747–757. https://doi.org/10.1016/j.trecan.2016.10.010

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Gallastegui N, Rosenblatt JD (2015) Regulatory B cells in anti-tumor immunity. Int Immunol 27:521–530. https://doi.org/10.1093/intimm/dxv034

    Article  CAS  PubMed  Google Scholar 

  60. Gentles AJ et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945. https://doi.org/10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cong J, Wei H (2019) Natural killer cells in the lungs. Front Immunol 10:1416. https://doi.org/10.3389/fimmu.2019.01416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zugazagoitia J et al (2020) Biomarkers associated with beneficial PD-1 checkpoint blockade in Non-Small Cell Lung Cancer (NSCLC) identified using high-Plex digital spatial profiling. Clin Cancer Res 26:4360–4368. https://doi.org/10.1158/1078-0432.CCR-20-0175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40:310–327. https://doi.org/10.1016/j.it.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y et al (2020) Immune cell PD-L1 Colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy. Clin Cancer Res 26:970–977. https://doi.org/10.1158/1078-0432.CCR-19-1040

    Article  CAS  PubMed  Google Scholar 

  66. Zhang QW et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7:e50946. https://doi.org/10.1371/journal.pone.0050946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19:108–119. https://doi.org/10.1038/s41590-017-0022-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabrilovich D, Myeloid-Derived I (2017) Suppressor Cells. Cancer Immunol Res 5:3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fu C, Jiang A (2018) Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol 9:3059. https://doi.org/10.3389/fimmu.2018.03059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194:2985–2991. https://doi.org/10.4049/jimmunol.1403134

    Article  CAS  PubMed  Google Scholar 

  71. Shaul ME, Fridlender ZG (2019) Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol 16:601–620. https://doi.org/10.1038/s41571-019-0222-4

    Article  PubMed  Google Scholar 

  72. Sanmamed MF et al (2017) Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol 28:1988–1995. https://doi.org/10.1093/annonc/mdx190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lambrechts D et al (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24:1277–1289. https://doi.org/10.1038/s41591-018-0096-5

    Article  CAS  PubMed  Google Scholar 

  74. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  75. Cruz-Bermudez A et al (2019) Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-beta signaling. Free Radic Biol Med 130:163–173. https://doi.org/10.1016/j.freeradbiomed.2018.10.450

    Article  CAS  PubMed  Google Scholar 

  76. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147. https://doi.org/10.1016/j.ccr.2009.12.041

    Article  CAS  PubMed  Google Scholar 

  77. Alcaraz J et al (2019) Stromal markers of activated tumor associated fibroblasts predict poor survival and are associated with necrosis in non-small cell lung cancer. Lung Cancer 135:151–160. https://doi.org/10.1016/j.lungcan.2019.07.020

    Article  PubMed  Google Scholar 

  78. Paiva AE et al (2018) Pericytes in the premetastatic niche. Cancer Res 78:2779–2786. https://doi.org/10.1158/0008-5472.CAN-17-3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Murgai M et al (2017) KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat Med 23:1176–1190. https://doi.org/10.1038/nm.4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim KS et al (2019) ELK3 expressed in lymphatic endothelial cells promotes breast cancer progression and metastasis through exosomal miRNAs. Sci Rep 9:8418. https://doi.org/10.1038/s41598-019-44828-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hendry SA et al (2016) The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front Immunol 7:621. https://doi.org/10.3389/fimmu.2016.00621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. https://doi.org/10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  83. Eble JA, Niland S (2019) The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 36:171–198. https://doi.org/10.1007/s10585-019-09966-1

    Article  CAS  PubMed  Google Scholar 

  84. Walker C, Mojares E, Del Rio Hernandez A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19. https://doi.org/10.3390/ijms19103028

  85. Poltavets V, Kochetkova M, Pitson SM, Samuel MS (2018) The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol 8:431. https://doi.org/10.3389/fonc.2018.00431

    Article  PubMed  PubMed Central  Google Scholar 

  86. Salmon H, Donnadieu E (2012) Within tumors, interactions between T cells and tumor cells are impeded by the extracellular matrix. Onco Targets Ther 1:992–994. https://doi.org/10.4161/onci.20239

    Article  Google Scholar 

  87. Rizvi H et al (2018) Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol 36:633–641. https://doi.org/10.1200/JCO.2017.75.3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cristescu R et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362. https://doi.org/10.1126/science.aar3593

  89. Velcheti V et al (2018) Real-world PD-L1 testing and distribution of PD-L1 tumor expression by immunohistochemistry assay type among patients with metastatic non-small cell lung cancer in the United States. PLoS One 13:e0206370. https://doi.org/10.1371/journal.pone.0206370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee HH et al (2019) Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell 36:168–178 e164. https://doi.org/10.1016/j.ccell.2019.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kerr K, The M (2018) PD-L1 immunohistochemistry biomarker: two steps forward, one step Back? J Thorac Oncol 13:291–294. https://doi.org/10.1016/j.jtho.2018.01.020

    Article  PubMed  Google Scholar 

  92. Hellmann MD et al (2019) Nivolumab plus Ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 381:2020–2031. https://doi.org/10.1056/NEJMoa1910231

    Article  CAS  PubMed  Google Scholar 

  93. Herbst RS et al (2020) Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med 383:1328–1339. https://doi.org/10.1056/NEJMoa1917346

    Article  CAS  PubMed  Google Scholar 

  94. Toki MI et al (2018) Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations. J Thorac Oncol 13:1884–1896. https://doi.org/10.1016/j.jtho.2018.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Berland L et al (2019) Current views on tumor mutational burden in patients with non-small cell lung cancer treated by immune checkpoint inhibitors. J Thorac Dis 11:S71–S80. https://doi.org/10.21037/jtd.2018.11.102

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fumet JD et al (2018) Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under anti-PD-1 therapy. Br J Cancer 119:950–960. https://doi.org/10.1038/s41416-018-0220-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Geng Y et al (2015) Prognostic role of tumor-infiltrating lymphocytes in lung cancer: a meta-analysis. Cell Physiol Biochem 37:1560–1571. https://doi.org/10.1159/000438523

    Article  CAS  PubMed  Google Scholar 

  98. Wong PF et al (2019) Multiplex quantitative analysis of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma. Clin Cancer Res 25:2442–2449. https://doi.org/10.1158/1078-0432.CCR-18-2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Donnem T et al (2016) Strategies for clinical implementation of TNM-Immunoscore in resected nonsmall-cell lung cancer. Ann Oncol 27:225–232. https://doi.org/10.1093/annonc/mdv560

    Article  CAS  PubMed  Google Scholar 

  100. Ayers M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127:2930–2940. https://doi.org/10.1172/JCI91190

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ichinokawa K et al (2019) Downregulated expression of human leukocyte antigen class I heavy chain is associated with poor prognosis in non-small-cell lung cancer. Oncol Lett 18:117–126. https://doi.org/10.3892/ol.2019.10293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Perea F et al (2017) The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer 140:888–899. https://doi.org/10.1002/ijc.30489

    Article  CAS  PubMed  Google Scholar 

  103. Yeh CH, Bellon M, Nicot C (2018) FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 17:115. https://doi.org/10.1186/s12943-018-0857-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li J et al (2019) Prognostic value of TGF-beta in lung cancer: systematic review and meta-analysis. BMC Cancer 19:691. https://doi.org/10.1186/s12885-019-5917-5

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ganesh K, Massague J (2018) TGF-beta inhibition and immunotherapy: checkmate. Immunity 48:626–628. https://doi.org/10.1016/j.immuni.2018.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mariathasan S et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548. https://doi.org/10.1038/nature25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Botticelli A et al (2018) Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med 16:219. https://doi.org/10.1186/s12967-018-1595-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97. https://doi.org/10.1126/science.aan3706

    Article  CAS  PubMed  Google Scholar 

  109. Sharma A et al (2019) Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors. Cell Rep 29:2164–2174 e2165. https://doi.org/10.1016/j.celrep.2019.10.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jia Q et al (2018) Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun 9:5361. https://doi.org/10.1038/s41467-018-07767-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Schalper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheehan, K., Schalper, K.A. (2021). Tumor Microenvironment: Immune Effector and Suppressor Imbalance. In: Chiang, A.C., Herbst, R.S. (eds) Lung Cancer. Current Cancer Research. Humana, Cham. https://doi.org/10.1007/978-3-030-74028-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74028-3_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-74027-6

  • Online ISBN: 978-3-030-74028-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics