Skip to main content

A Long Way for Europe and Germany: From Apollo 16 to the International Space Station ISS

  • Chapter
  • First Online:
Breakthroughs in Space Life Science Research

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

  • 402 Accesses

Abstract

When Apollo 16 took off for the Moon in 1972, the Federal Republic of Germany launched its first life science research project in space: the BIOSTACK experiment to study the intensity and composition of cosmic radiation became part of the Apollo missions. The TEXUS rocket programme was initiated in 1976 to pave the ground for the European space laboratory Spacelab, whose 1983 maiden flight on an American Space Shuttle raised microgravity research to an entirely new quality. The German Spacelab missions D-1 and D-2 followed and further cooperation between Europe and the US was realized during the Shuttle/Spacelab era in the frame of the so-called IML model. The German-Russian MIR’92 and MIR’97 missions, two EUROMIR missions by ESA, and several CNES missions to MIR provided Europe’s scientists with further attractive research opportunities, as did parabolic flights on an Airbus A300 from the late 1990s onward. A new chapter has been opened by the ISS and its European Columbus laboratory. In addition, terrestrial simulation capabilities for biology, as well as bed rest, isolation, and confinement studies for research in human physiology and psychology, prepare and complement life sciences research in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blottner D, Salanova M (2015) The neuromuscular system: from earth to space life science, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-12298-4

    Book  Google Scholar 

  • Briegleb W (1988) Ground-borne methods and results in gravitational cell biology. Physiologist 31:44–47

    Google Scholar 

  • Buckey JC, Homick JL (2003) The Neurolab spacelab mission: neuroscience research in space. NASA SP-2003-535

    Google Scholar 

  • Choukèr A, Stahn AC (2020) COVID-19 – the largest isolation study in history: the value of shared learnings from spaceflight analogs. Npj Microgravity 6:32. https://doi.org/10.1038/s41526-020-00122-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin B, Vega LM (2019) NASA’s use of ground and flight analogs in reducing human risks for exploration. Front Physiol. Conference abstract: 39th ISGP meeting & ESA life sciences meeting. https://doi.org/10.3389/conf.fphys.2018.26.00044

  • Deitrick JE, Whedon GD, Shorr E (1948) Effects of immobilization upon various metabolic and physiologic functions of normal men. Am J Med 4:3–36

    Article  CAS  Google Scholar 

  • Franke B (2007) Forschungsraketen (in German). Stedinger Verlag, Lemwerder

    Google Scholar 

  • Goswami N, van Loon JJWA, Roessler A, Blaber AP, White O (2019) Gravitational physiology, aging, and medicine. Front Physiol 10. https://doi.org/10.3389/fphys.2019.01338

  • Gunga HC (2015) Human physiology in extreme environments. Elsevier, Amsterdam

    Google Scholar 

  • Gunga HC, Weller von Ahlefeld V, Appell Coriolano HJ, Werner A, Hoffmann U (2016) Cardiovascular system, red blood cells, and oxygen transport in microgravity, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-33226-0

    Book  Google Scholar 

  • Heer M, Titze J, Smith SM, Baecker N (2015) Nutrition, physiology and metabolism in spaceflight and analog studies, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-18521-7

    Book  Google Scholar 

  • Hemmersbach R, Häder DP, Braun M (2018) Methods for gravitational biology research. In: Gravitational biology I – Gravity sensing and graviorientation in microorganisms and plants, SpringerBriefs in space life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93894-3

    Chapter  Google Scholar 

  • Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, de Geest M, Hauslage J, Hilbig R, Hill RJA, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJWA, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13:1–17

    Article  Google Scholar 

  • Launius R (2020) Highlights of human spaceflight: the United States. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_79-2

    Chapter  Google Scholar 

  • Naumann RJ, Murphy KL, Lewis ML (1999) Spacelab sciences results study, Microgravity life sciences, vol III. NASA Study NAS8-97095

    Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  CAS  Google Scholar 

  • Pletser V, Winter J, Duclos F, Bret-Dibat T, Friedrich U, Clervoy JF, Gharib T, Gai F, Minster O, Sundblad P (2012) The first joint European partial-g parabolic flight campaign at moon and mars gravity levels for science and exploration. Microgr Sci Technol 24:383–395

    Article  Google Scholar 

  • Pletser V, Rouquette S, Friedrich U, Clervoy JF, Gharib T, Gai F, Mora C (2015) European parabolic flight campaigns with Airbus ZERO-G: looking back at the A300 and looking forward to the A310. Adv Space Res 56:1003–1013

    Article  Google Scholar 

  • Preu P, Braun M (2014) German SIMBOX on Chinese mission Shenzhou-8: Europe’s first bilateral cooperation utilizing China’s Shenzhou programme. Acta Astron 94(2):584–591

    Article  Google Scholar 

  • Reinke N (2007) The history of German space policy - ideas, influences, and interdependence 1923–2002. Editions Beauchesne, Paris

    Google Scholar 

  • Risin D, Stepaniak PC (2013) Biomedical results of the space shuttle program. NASA SP-2013-607

    Google Scholar 

  • Ruyters G (2008) Raumfahrtmedizin in der Bundesrepublik Deutschland. In: Wirth F, Harsch V (eds) 60 Jahre Luft- und Raumfahrtmedizin in Deutschland nach 1945. Rethra Verlag, Neu Brandenburg, pp 91–122

    Google Scholar 

  • Ruyters G (2020) Highlights of human spaceflight in Europe: ESA and DLR. In: Young LR, Sutton JP (eds) Handbook of bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_70-1

    Chapter  Google Scholar 

  • Ruyters G, Friedrich U (2006) From the Bremen Drop Tower to the International Space Station ISS – ways to weightlessness in the German space life sciences program. Signal Transduct 6:397–405

    Article  CAS  Google Scholar 

  • Ruyters G, Preu P (2010) Vom Bremer Fallturm zur Internationalen Raumstation – Faszinierende Forschung in Schwerelosigkeit. In: Schwerelos – Europa forscht im Weltraum. Spektrum der Wissenschaft Extra. Ort, Heidelberg, pp 14–19

    Google Scholar 

  • Sandler H, Vernikos J (eds) (1986) Inactivity: physiological effects. Academic, New York

    Google Scholar 

  • Schmidt W (2010) Gravity induced absorption changes in Phycomyces blakesleanus and coleoptiles of Zea mays as measured on the drop tower in Bremen (FRG). Microgravity Sci Technol 22:79–85

    Article  Google Scholar 

  • Schmidt W, Galland P (2004) Optospectroscopic detection of primary reactions associated with the graviperception of Phycomyces: effects of micro- and hypergravity. Plant Physiol 135:183–192

    Article  CAS  Google Scholar 

  • Tomilovskaya E, Shigueva T, Sayenko D, Rukavishnikov I, Kozlovskaya I (2019) Dry immersion as a ground-based model of microgravity physiological effects. Front Physiol. https://doi.org/10.3389/fphys.2019.00284

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruyters, G., Braun, M., Stang, K.M. (2021). A Long Way for Europe and Germany: From Apollo 16 to the International Space Station ISS. In: Breakthroughs in Space Life Science Research . SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-74022-1_2

Download citation

Publish with us

Policies and ethics