Skip to main content

Estimating the Manifold Dimension of a Complex Network Using Weyl’s Law

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

The dimension of the space underlying real-world networks has been shown to strongly influence the networks structural properties, from the degree distribution to the way the networks respond to diffusion and percolation processes. In this paper we propose a way to estimate the dimension of the manifold underlying a network that is based on Weyl’s law, a mathematical result that describes the asymptotic behaviour of the eigenvalues of the graph Laplacian. For the case of manifold graphs, the dimension we estimate is equivalent to the fractal dimension of the network, a measure of structural self-similarity. Through an extensive set of experiments on both synthetic and real-world networks we show that our approach is able to correctly estimate the manifold dimension. We compare this with alternative methods to compute the fractal dimension and we show that our approach yields a better estimate on both synthetic and real-world examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiba, T., Nakamura, K., Takaguchi, T.: Fractality of massive graphs: scalable analysis with sketch-based box-covering algorithm. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 769–774. IEEE (2016)

    Google Scholar 

  2. Chorley, M., Rossi, L., Tyson, G., Williams, M.: Pub crawling at scale: tapping untappd to explore social drinking. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 10 (2016)

    Google Scholar 

  3. Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3(4), 276–282 (2007)

    Article  Google Scholar 

  4. Crucitti, P., Latora, V., Porta, S.: Centrality measures in spatial networks of urban streets. Phys. Rev. E 73(3), 036125 (2006)

    Article  Google Scholar 

  5. Daqing, L., Kosmidis, K., Bunde, A., Havlin, S.: Dimension of spatially embedded networks. Nat. Phys. 7(6), 481–484 (2011)

    Article  Google Scholar 

  6. Erath, A., Löchl, M., Axhausen, K.W.: Graph-theoretical analysis of the swiss road and railway networks over time. Netw. Spat. Econ. 9(3), 379–400 (2009)

    Article  MathSciNet  Google Scholar 

  7. Gursoy, A., Keskin, O., Nussinov, R.: Topological properties of protein interaction networks from a structural perspective. Biochem. Soc. Trans. 36(Pt 6), 1398–1403 (2008)

    Article  Google Scholar 

  8. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  MathSciNet  Google Scholar 

  9. Latora, V., Nicosia, V., Russo, G.: Complex Networks: Principles, Methods and Applications. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  10. Lima, A., Rossi, L., Musolesi, M.: Coding together at scale: GitHub as a collaborative social network. In: Proceedings of 8th AAAI International Conference on Weblogs and Social Media (2014)

    Google Scholar 

  11. Minello, G., Rossi, L., Torsello, A.: On the von Neumann entropy of graphs. J. Complex Netw. 7(4), 491–514 (2019)

    Article  MathSciNet  Google Scholar 

  12. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  13. Rossi, L., Torsello, A., Hancock, E.R.: Node centrality for continuous-time quantum walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 103–112. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3_11

    Chapter  Google Scholar 

  14. Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence. Phys. Rev. E 91(2), 022815 (2015)

    Article  MathSciNet  Google Scholar 

  15. Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum Jensen-Shannon divergence. Phys. Rev. E 88(3), 032806 (2013)

    Article  Google Scholar 

  16. Rozenfeld, H.D., Havlin, S., Ben-Avraham, D.: Fractal and transfractal recursive scale-free nets. New J. Phys. 9(6), 175 (2007)

    Article  Google Scholar 

  17. Song, C., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal dimension of a complex network: the box covering algorithm. J. Stat. Mech. Theory Exp. 2007(03), P03006 (2007)

    Article  Google Scholar 

  18. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433(7024), 392–395 (2005)

    Article  Google Scholar 

  19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    MATH  Google Scholar 

  20. Wei, D.J., Liu, Q., Zhang, H.X., Hu, Y., Deng, Y., Mahadevan, S.: Box-covering algorithm for fractal dimension of weighted networks. Sci. Rep. 3(1), 1–8 (2013)

    Google Scholar 

  21. Weyl, H.: Über die asymptotische verteilung der eigenwerte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1911, 110–117 (1911)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossi, L., Torsello, A. (2021). Estimating the Manifold Dimension of a Complex Network Using Weyl’s Law. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics