Skip to main content

Predicting Polypharmacy Side Effects Through a Relation-Wise Graph Attention Network

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

Polypharmacy is the combined use of multiple drugs, widely adopted in medicine to treat patients that suffer of complex diseases. Therefore, it is important to have reliable tools able to predict if the activity of a drug could unfavorably change when combined with others. State-of-the-art methods face this problem as a link prediction task on a multilayer graph describing drug-drug interactions (DDI) and protein-protein interactions (PPI), since it has been demonstrated to be the most effective representation. Graph Convolutional Networks (GCN) are the method most commonly chosen in recent research for this problem. We propose to improve the performance of GCN on this link prediction task through the addition of a novel relation-wise Graph Attention Network (GAT), used to assign different weight to the different relationships in the multilayer graph. We experimentally demonstrate that the proposed GCN, compared with other recent methods, is able to achieve a state-of-the-art performance on a publicly available polypharmacy side effect network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  2. Carletti, V., Foggia, P., Garrison, E., Greco, L., Ritrovato, P., Vento, M.: Graph-based representations for supporting genome data analysis and visualization: opportunities and challenges. In: Conte, D., Ramel, J.-Y., Foggia, P. (eds.) GbRPR 2019. LNCS, vol. 11510, pp. 237–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20081-7_23

    Chapter  Google Scholar 

  3. Chen, D., Jalilifard, A., Veloso, A., Ziviani, N.: Modeling pharmacological effects with multi-relation unsupervised graph embedding. arXiv preprint arXiv:2004.14842 (2020)

  4. Consortium, T.C.P.G.: Computational pan-genomics: status, promises and challenges. Brief. Bioinform. 19, 118–135 (2016). https://doi.org/10.1093/bib/bbw089

    Article  Google Scholar 

  5. Fey, M.: Just jump: dynamic neighborhood aggregation in graph neural networks. arXiv preprint arXiv:1904.04849 (2019)

  6. Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery (2018). https://doi.org/10.1145/3219819.3219947

  7. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. CoRR (2017)

    Google Scholar 

  8. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–734 (2005)

    Google Scholar 

  9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 1024–1034. Curran Associates, Inc. (2017)

    Google Scholar 

  10. Malone, B., García-Durán, A., Niepert, M.: Knowledge graph completion to predict polypharmacy side effects. In: Auer, S., Vidal, M.-E. (eds.) DILS 2018. LNCS, vol. 11371, pp. 144–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06016-9_14

    Chapter  Google Scholar 

  11. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5425–5434 (2017)

    Google Scholar 

  12. Monti, F., Bronstein, M., Bresson, X.: Geometric matrix completion with recurrent multi-graph neural networks. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3697–3707. Curran Associates, Inc. (2017)

    Google Scholar 

  13. Nováček, V., Mohamed, S.K.: Predicting polypharmacy side-effects using knowledge graph embeddings. AMIA Summits Transl. Sci. Proc. 2020, 449 (2020)

    Google Scholar 

  14. Pavlopoulos, G.A., et al.: Using graph theory to analyze biological networks. BioData Min. 4(1), 10 (2011). https://doi.org/10.1186/1756-0381-4-10

    Article  Google Scholar 

  15. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML), vol. 48 (2016)

    Google Scholar 

  16. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ

  17. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: CBAM: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  18. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 1–21 (2020)

    MathSciNet  Google Scholar 

  19. Yang, B., Yih, S.W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (ICLR), May 2015

    Google Scholar 

  20. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018). https://doi.org/10.1093/bioinformatics/bty294

    Article  Google Scholar 

  21. Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., Hoffman, M.M.: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion 50, 71–91 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Carletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carletti, V., Foggia, P., Greco, A., Roberto, A., Vento, M. (2021). Predicting Polypharmacy Side Effects Through a Relation-Wise Graph Attention Network. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics