Skip to main content

Target Robust Discriminant Analysis

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

In practice, the data distribution at test time often differs, to a smaller or larger extent, from that of the original training data. Consequentially, the so-called source classifier, trained on the available labelled data, deteriorates on the test, or target, data. Domain adaptive classifiers aim to combat this problem, but typically assume some particular form of domain shift. Most are not robust to violations of domain shift assumptions and may even perform worse than their non-adaptive counterparts. We construct robust parameter estimators for discriminant analysis that guarantee performance improvements of the adaptive classifier over the non-adaptive source classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 101(473), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2009). https://doi.org/10.1007/s10994-009-5152-4

  3. Cherukuri, A., Gharesifard, B., Cortes, J.: Saddle-point dynamics: conditions for asymptotic stability of saddle points. SIAM J. Control. Optim. 55(1), 486–511 (2017)

    Article  MathSciNet  Google Scholar 

  4. Condat, L.: Fast projection onto the simplex and the \(l_1\) ball. Math. Program. 158(1–2), 575–585 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cortes, C., Mohri, M.: Domain adaptation and sample bias correction theory and algorithm for regression. Theor. Comput. Sci. 519, 103–126 (2014)

    Article  MathSciNet  Google Scholar 

  6. Dua, D., Graff, C.: UCI Machine Learning Repository (2017)

    Google Scholar 

  7. Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B., et al.: Correcting sample selection bias by unlabeled data. In: Advances in Neural Information Processing Systems, p. 601 (2007)

    Google Scholar 

  8. Kouw, W.M., Loog, M.: A review of domain adaptation without target labels. IEEE Trans. Pattern Anal. Mach. Intell. 43, 766–785 (2019)

    Article  Google Scholar 

  9. Liu, A., Ziebart, B.: Robust classification under sample selection bias. In: Advances in Neural Information Processing Systems, pp. 37–45 (2014)

    Google Scholar 

  10. Loog, M.: Contrastive pessimistic likelihood estimation for semi-supervised classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 462–475 (2016)

    Article  Google Scholar 

  11. Loog, M., Krijthe, J.H., Jensen, A.C.: On measuring and quantifying performance: error rates, surrogate loss, and an example in semi-supervised learning. In: Chen, C.H. (ed.) Handbook of Pattern Recognition and Computer Vision, 5th edn., pp. 53–68. World Scientific, Singapore (2016). doi: https://doi.org/10.1142/9789814656535_0003

  12. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition, 2nd edn. Wiley, Hoboken, New Jersey (2004)

    MATH  Google Scholar 

  13. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, Hoboken, New Jersey (2000)

    Book  Google Scholar 

  14. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  15. Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)

    Article  MathSciNet  Google Scholar 

  16. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  17. Wen, J., Yu, C.N., Greiner, R.: Robust learning under uncertain test distributions: relating covariate shift to model misspecification. In: International Conference on Machine Learning, pp. 631–639 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter M. Kouw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kouw, W.M., Loog, M. (2021). Target Robust Discriminant Analysis. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics