Skip to main content

Underestimation Bias and Underfitting in Machine Learning

  • Conference paper
  • First Online:
Trustworthy AI - Integrating Learning, Optimization and Reasoning (TAILOR 2020)

Abstract

Often, what is termed algorithmic bias in machine learning will be due to historic bias in the training data. But sometimes the bias may be introduced (or at least exacerbated) by the algorithm itself. The ways in which algorithms can actually accentuate bias has not received a lot of attention with researchers focusing directly on methods to eliminate bias - no matter the source. In this paper we report on initial research to understand the factors that contribute to bias in classification algorithms. We believe this is important because underestimation bias is inextricably tied to regularization, i.e. measures to address overfitting can accentuate bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    archive.ics.uci.edu/ml/.

  2. 2.

    scikit-learn.org.

References

  1. Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning (2019). http://www.fairmlbook.org

  2. Calders, T., Verwer, S.: Three naive Bayes approaches for discrimination-free classification. Data Min. Knowl. Disc. 21(2), 277–292 (2010). https://doi.org/10.1007/s10618-010-0190-x

    Article  MathSciNet  Google Scholar 

  3. Chapman, L.J., Chapman, J.P.: Illusory correlation as an obstacle to the use of valid psychodiagnostic signs. J. Abnorm. Psychol. 74(3), 271 (1969)

    Article  Google Scholar 

  4. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2_12

    Chapter  Google Scholar 

  5. Costello, F., Watts, P.: The rationality of illusory correlation. Psychol. Rev. 126(3), 437 (2019)

    Article  Google Scholar 

  6. Dressel, J., Farid, H.: The accuracy, fairness, and limits of predicting recidivism. Sci. Adv. 4(1), eaao5580 (2018)

    Google Scholar 

  7. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259–268 (2015)

    Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  9. Hamilton, D.L., Gifford, R.K.: Illusory correlation in interpersonal perception: a cognitive basis of stereotypic judgments. J. Exp. Soc. Psychol. 12(4), 392–407 (1976)

    Article  Google Scholar 

  10. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 35–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_3

    Chapter  Google Scholar 

  11. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: How we analyzed the COMPAS recidivism algorithm. ProPublica 9 (2016)

    Google Scholar 

  12. Menon, A.K., Williamson, R.C.: The cost of fairness in binary classification. In: Conference on Fairness, Accountability and Transparency, pp. 107–118 (2018)

    Google Scholar 

  13. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost: unbiased boosting with categorical features. In: Advances in Neural Information Processing Systems, pp. 6638–6648 (2018)

    Google Scholar 

  14. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: International Conference on Machine Learning, pp. 325–333 (2013)

    Google Scholar 

  15. Zhang, Y., Zhou, L.: Fairness assessment for artificial intelligence in financial industry. arXiv preprint arXiv:1912.07211 (2019)

Download references

Acknowledgements

This work was funded by Science Foundation Ireland through the SFI Centre for Research Training in Machine Learning (Grant No. 18/CRT/6183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pádraig Cunningham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cunningham, P., Delany, S.J. (2021). Underestimation Bias and Underfitting in Machine Learning. In: Heintz, F., Milano, M., O'Sullivan, B. (eds) Trustworthy AI - Integrating Learning, Optimization and Reasoning. TAILOR 2020. Lecture Notes in Computer Science(), vol 12641. Springer, Cham. https://doi.org/10.1007/978-3-030-73959-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73959-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73958-4

  • Online ISBN: 978-3-030-73959-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics