Skip to main content

Synthesising Reinforcement Learning Policies Through Set-Valued Inductive Rule Learning

  • Conference paper
  • First Online:
Trustworthy AI - Integrating Learning, Optimization and Reasoning (TAILOR 2020)

Abstract

Today’s advanced Reinforcement Learning algorithms produce black-box policies, that are often difficult to interpret and trust for a person. We introduce a policy distilling algorithm, building on the CN2 rule mining algorithm, that distills the policy into a rule-based decision system. At the core of our approach is the fact that an RL process does not just learn a policy, a mapping from states to actions, but also produces extra meta-information, such as action values indicating the quality of alternative actions. This meta-information can indicate whether more than one action is near-optimal for a certain state. We extend CN2 to make it able to leverage knowledge about equally-good actions to distill the policy into fewer rules, increasing its interpretability by a person. Then, to ensure that the rules explain a valid, non-degenerate policy, we introduce a refinement algorithm that fine-tunes the rules to obtain good performance when executed in the environment. We demonstrate the applicability of our algorithm on the Mario AI benchmark, a complex task that requires modern reinforcement learning algorithms including neural networks. The explanations we produce capture the learned policy in only a few rules, that allow a person to understand what the black-box agent learned. Source code: https://gitlab.ai.vub.ac.be/yocoppen/svcn2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Another illustration can be found on pages 8 and 9 of https://www.ida.liu.se/~frehe08/tailor2020/TAILOR_2020_paper_48.pdf.

  2. 2.

    https://github.com/biolab/orange3.

  3. 3.

    Since BDPI is an actor-critic algorithm, we use the actor predictions as output, i.e. probabilities over actions. With value-based algorithms, e.g. DQN [18], one could record the Q-values instead.

References

  1. Agogino, A.K., Tumer, K.: Analyzing and visualizing multiagent rewards in dynamic and stochastic domains. Auton Agents Multi-Agent Syst. 17(2), 320–338 (2008). https://doi.org/10.1007/s10458-008-9046-9

    Article  Google Scholar 

  2. Alharin, A., Doan, T.N., Sartipi, M.: Reinforcement learning interpretation methods: a survey. IEEE Access 8, 171058–171077 (2020). https://doi.org/10.1109/ACCESS.2020.3023394

    Article  Google Scholar 

  3. Brys, T., Nowé, A., Kudenko, D., Taylor, M.E.: Combining multiple correlated reward and shaping signals by measuring confidence. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1687–1693. AAAI Press, Palo Alto (2014)

    Google Scholar 

  4. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learn. 3(4), 261–283 (1989). https://doi.org/10.1007/BF00116835

    Article  Google Scholar 

  5. Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowé, A.: Distilling deep reinforcement learning policies in soft decision trees. In: Miller, T., Weber, R., Magazzeni, D. (eds.) Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence, Macau, pp. 1–6 (2019)

    Google Scholar 

  6. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Restraining Bolts for reinforcement learning agents. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. vol. 9, pp. 13659–13662. AAAI Press, Palo Alto (2020). https://doi.org/10.1609/aaai.v34i09.7114

  7. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. In: Besold, T.R., Kutz, O. (eds.) Proceedings of the First International Workshop on Comprehensibility and Explanation in AI and ML 2017. AI*IA Series, vol. 2071. CEUR Workshop Proceedings, Aachen (2017)

    Google Scholar 

  8. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Cognitive Technologies. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

  9. Gevaert, A., Peck, J., Saeys, Y.: Distillation of deep reinforcement learning models using fuzzy inference systems. In: Beuls, K., et al. (eds.) Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), vol. 2491. CEUR Workshop Proceedings, Aachen (2019)

    Google Scholar 

  10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv e-prints arXiv:1503.02531 (2015)

  11. Huang, J., Angelov, P.P., Yin, C.: Interpretable policies for reinforcement learning by empirical fuzzy sets. Eng. Appl. Artif. Intell. 91 (2020). https://doi.org/10.1016/j.engappai.2020.103559

  12. Karakovskiy, S., Togelius, J.: The Mario AI benchmark and competitions. IEEE Trans. Comput. Intell. AI Games 4(1), 55–67 (2012). https://doi.org/10.1109/TCIAIG.2012.2188528

    Article  Google Scholar 

  13. Lavrač, N., Flach, P., Zupan, B.: Rule evaluation measures: a unifying view. In: Džeroski, S., Flach, P. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 174–185. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48751-4_17

    Chapter  Google Scholar 

  14. Libin, P.J.K., et al.: Deep reinforcement learning for large-scale epidemic control. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12461, pp. 155–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67670-4_10

    Chapter  Google Scholar 

  15. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: Explainable reinforcement learning through a causal lens. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, vol. 3, pp. 2493–2500. AAAI Press, Palo Alto (2020). https://doi.org/10.1609/aaai.v34i03.5631

  16. Maes, P.: Computational reflection. In: Morik, K. (ed.) GWAI-87 11th German Workshop on Artifical Intelligence. Informatik-Fachberichte, vol. 152, pp. 251–265. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-73005-4_27

  17. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

    Article  MathSciNet  MATH  Google Scholar 

  18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  19. Molnar, C.: Interpretable Machine Learning. Leanpub, Victoria (2019)

    Google Scholar 

  20. Rusu, A.A., et al.: Policy distillation. In: International Conference on Learning Representations (2016). arXiv:1511.06295

  21. Rückstieß, T., Sehnke, F., Schaul, T., Wierstra, D., Sun, Y., Schmidhuber, J.: Exploring parameter space in reinforcement learning. Paladyn, J. Behav. Robot. 1(1), 14–24 (2010). doi: https://doi.org/10.2478/s13230-010-0002-4

  22. Steckelmacher, D., Plisnier, H., Roijers, D.M., Nowé, A.: Sample-efficient model-free reinforcement learning with off-policy critics. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11908, pp. 19–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46133-1_2

    Chapter  Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  24. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Neural Information Processing Systems (NIPS), pp. 1057–1063 (2000)

    Google Scholar 

  25. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: an overview. In: Tadepalli, P., Givan, R., Driessens, K. (eds.) Proceedings of the ICML-2004 Workshop on Relational Reinforcement Learning, Banff, Canada, pp. 1–9 (2004)

    Google Scholar 

  26. Todorovski, L., Flach, P., Lavrač, N.: Predictive performance of weighted relative accuracy. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 255–264. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_25

    Chapter  Google Scholar 

  27. Zambaldi, V., et al.: Deep reinforcement learning with relational inductive biases. In: International Conference on Learning Representations (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Foundation Flanders (FWO) [grant numbers G062819N and 1129319N], the AI Research Program from the Flemish Government (Belgium) and the Francqui Foundation. This work is part of the research program Hybrid Intelligence with project number 024.004.022, which is (partly) financed by the Dutch Ministry of Education, Culture and Science (OCW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youri Coppens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coppens, Y., Steckelmacher, D., Jonker, C.M., Nowé, A. (2021). Synthesising Reinforcement Learning Policies Through Set-Valued Inductive Rule Learning. In: Heintz, F., Milano, M., O'Sullivan, B. (eds) Trustworthy AI - Integrating Learning, Optimization and Reasoning. TAILOR 2020. Lecture Notes in Computer Science(), vol 12641. Springer, Cham. https://doi.org/10.1007/978-3-030-73959-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73959-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73958-4

  • Online ISBN: 978-3-030-73959-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics