Skip to main content

Bambara Groundnut Starch

Abstract

Novel starch sources with unique functionality and physicochemical properties are being sought by the industry to reduce the pressure on conventional sources of starch such as corn which are currently experiencing competing uses. Bambara groundnut is a starchy grain that can be potentially used as an alternative source of starch for various industrial applications. These new starch sources including starch isolated from Bambara are comparatively cheaper than the conventional ones and are particularly good sources of resistant starch which have enormous health benefits. This chapter presents the extraction methods, composition, structure, physicochemical properties, and modification of Bambara groundnut starch. Some comparisons with commercial starch sources for a better understanding were also discussed. The chapter also suggested future studies such as the chain length distribution of amylopectin for a better understanding of the influence this starch component (amylopectin) on the physicochemical properties of Bambara groundnut starch. The application of modified Bambara starch in model food systems are also required in the future to fully explore the potentials of the starch.

Keywords

  • Amylose
  • Bambara groundnut
  • In vitro digestibility
  • Modification
  • Functional properties
  • Starch
  • Structure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aberle T, Burchard W, Vorwerg W, Radosta S (1994) Conformational contributions of amylose and amylopectin to the structural properties of starches from various sources. Starch-Stärke 46(9):329–335

    CrossRef  CAS  Google Scholar 

  • Adebowale K, Afolabi T, Lawal O (2002) Isolation, chemical modification and physicochemical characterisation of Bambarra groundnut (Voandzeia subterranea) starch and flour. Food Chem 78(3):305–311

    CrossRef  CAS  Google Scholar 

  • Adebowale K, Lawal O (2002) Effect of annealing and heat moisture conditioning on the physicochemical characteristics of Bambarra groundnut (Voandzeia subterranea) starch. Nahrung/Food 46(5):311–316

    CrossRef  CAS  PubMed  Google Scholar 

  • Afolabi TA (2012) Synthesis and physicochemical properties of carboxymethylated bambara groundnut (Voandzeia subterranea) starch. Int J Food Sci Technol 47(3):445–451

    CrossRef  CAS  Google Scholar 

  • Afolabi TA, Opara AO, Kareem SO, Oladoyinbo FO (2018) In vitro digestibility of hydrothermally modified Bambara groundnut (Vigna subterranea L.) starch and flour. Food Sci Nutr 6(1):36–46

    CrossRef  CAS  PubMed  Google Scholar 

  • Agama-Acevedo E, Nuñez-Santiago MC, Alvarez-Ramirez J, Bello-Pérez LA (2015) Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars. Carbohydr Polym 124:17–24

    CrossRef  CAS  PubMed  Google Scholar 

  • Ai Y, Medic J, Jiang H, Wang D, Jane J-l (2011) Starch characterization and ethanol production of sorghum. J Agric Food Chem 59(13):7385–7392

    CrossRef  CAS  PubMed  Google Scholar 

  • Annor GA, Marcone M, Corredig M, Bertoft E, Seetharaman K (2015) Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI). J Cereal Sci 64:76–81

    CrossRef  CAS  Google Scholar 

  • Ashogbon AO (2018) Contradictions in the study of some compositional and physicochemical properties of starches from various botanical sources. Starch-Stärke 70(1–2):1600372

    CrossRef  CAS  Google Scholar 

  • Becker A, Hill SE, Mitchell JR (2001) Relevance of amylose-lipid complexes to the behaviour of thermally processed starches. Starch-Stärke 53(3–4):121–130

    CrossRef  CAS  Google Scholar 

  • Bello-Perez L, Roger P, Baud B, Colonna P (1998) Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. J Cereal Sci 27(3):267–278

    CrossRef  CAS  Google Scholar 

  • Bemiller JN (1997) Starch modification: challenges and prospects. Starch-Stärke 49(4):127–131

    CrossRef  CAS  Google Scholar 

  • Bertoft E (2013) On the building block and backbone concepts of amylopectin structure. Cereal Chem 90(4):294–311

    CrossRef  CAS  Google Scholar 

  • Bertoft E (2017) Understanding starch structure: recent progress. Agronomy 7(56):1–30

    Google Scholar 

  • Bhatnagar S, Hanna MA (1994) Amylose-lipid complex formation during single-screw extrusion of various corn starches. Cereal Chem 71(6):582–586

    CAS  Google Scholar 

  • Biliaderis C, Seneviratne H (1990) On the supermolecular structure and metastability of glycerol monostearate-amylose complex. Carbohydr Polym 13(2):185–206

    CrossRef  CAS  Google Scholar 

  • Biliaderis CG, Galloway G (1989) Crystallization behavior of amylose-V complexes: structure-property relationships. Carbohydr Res 189:31–48

    CrossRef  CAS  Google Scholar 

  • Biliaderis CG, Tonogai JR (1991) Influence of lipids on the thermal and mechanical properties of concentrated starch gels. J Agric Food Chem 39(5):833–840

    CrossRef  CAS  Google Scholar 

  • Blazek J, Copeland L (2008) Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr Polym 71(3):380–387

    CrossRef  CAS  Google Scholar 

  • Bogracheva TY, Morris V, Ring S, Hedley C (1998) The granular structure of C-type pea starch and its role in gelatinization. Biopolymers 45(4):323–332

    CrossRef  CAS  Google Scholar 

  • Carcea M, Cubadda R, Acquistucci R (1992) Physiochemical and rheological characterization of sorghum starch. J Food Sci 57(4):1024–1025

    CrossRef  CAS  Google Scholar 

  • Chang F, He X, Fu X, Huang Q, Jane, J.-l. (2014) Effects of heat treatment and moisture contents on interactions between lauric acid and starch granules. J Agric Food Chem 62(31):7862–7868

    CrossRef  CAS  PubMed  Google Scholar 

  • Cheng W, Luo Z, Li L, Fu X (2015) Preparation and characterization of Debranched-starch/phosphatidylcholine inclusion complexes. J Agric Food Chem 63(2):634–641

    CrossRef  CAS  PubMed  Google Scholar 

  • Chung H, Cho S, Chung J, Shin T, Son H, Lim S-T (1998) Physical and molecular characteristics of cowpea and acorn starches in comparison with corn and potato starches. Food Sci Biotechnol 7(4):269–275

    Google Scholar 

  • Chung H-J, Hoover R, Liu Q (2009a) The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. Int J Biol Macromol 44(2):203–210

    CrossRef  CAS  PubMed  Google Scholar 

  • Chung H-J, Liu Q, Hoover R (2009b) Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr Polym 75(3):436–447

    CrossRef  CAS  Google Scholar 

  • Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymer gels. Adv Polym Sci 83:57–192

    CrossRef  CAS  Google Scholar 

  • Cohen R, Schwartz B, Peri I, Shimoni E (2011) Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. J Agric Food Chem 59(14):7932–7938

    CrossRef  CAS  PubMed  Google Scholar 

  • Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23(6):1527–1534

    CrossRef  CAS  Google Scholar 

  • Cui S (2005) Food carbohydrates:chemistry, physical properties, and application, 1st edn. Taylor and Francis Group, Boca Baton

    CrossRef  Google Scholar 

  • D’Silva TV, Taylor J, Emmambux MN (2011) Enhancement of the pasting properties of teff and maize starches through wet–heat processing with added stearic acid. J Cereal Sci 53(2):192–197

    CrossRef  CAS  Google Scholar 

  • da Rosa Zavareze E, Dias ARG (2011) Impact of heat-moisture treatment and annealing in starches: a review. Carbohydr Polym 83(2):317–328

    CrossRef  CAS  Google Scholar 

  • Derycke V, Vandeputte G, Vermeylen R, De Man W, Goderis B, Koch M, Delcour J (2005) Starch gelatinization and amylose–lipid interactions during rice parboiling investigated by temperature resolved wide angle X-ray scattering and differential scanning calorimetry. J Cereal Sci 42(3):334–343

    CrossRef  CAS  Google Scholar 

  • Dhital S, Shrestha AK, Hasjim J, Gidley MJ (2011) Physicochemical and structural properties of maize and potato starches as a function of granule size. J Agric Food Chem 59(18):10151–10161

    CrossRef  CAS  PubMed  Google Scholar 

  • Dupuis JH, Liu Q (2019) Potato starch: a review of physicochemical, functional and nutritional properties. Am J Potato Res 96(2):127–138

    CrossRef  CAS  Google Scholar 

  • Eliasson A, Finstad H, Ljunger G (1988) A study of starch-lipid interactions for some native and modified maize starches. Starch-Stärke 40(3):95–100

    CrossRef  CAS  Google Scholar 

  • Eliasson A, Krog N (1985) Physical properties of amylose-monoglyceride complexes. J Cereal Sci 3(3):239–248

    CrossRef  CAS  Google Scholar 

  • Englyst HN, Kingman S, Cummings J (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  • Exarhopoulos S, Raphaelides SN (2012) Morphological and structural studies of thermally treated starch-fatty acid systems. J Cereal Sci 55(2):139–152

    CrossRef  CAS  Google Scholar 

  • Farris PL (2009) Economic growth and organization of the US corn starch industry. In: BeMiller J, Whistler R (eds) Starch chemistry and technology. Academic, USA

    Google Scholar 

  • Freitas R, Paula R, Feitosa J, Rocha S, Sierakowski M-R (2004) Amylose contents, rheological properties and gelatinization kinetics of yam (Dioscorea alata) and cassava (Manihot utilissima) starches. Carbohydr Polym 55(1):3–8

    CrossRef  CAS  Google Scholar 

  • French D (1972) Jpn Soc. Starch Sci 19:8

    CrossRef  CAS  Google Scholar 

  • Gałkowska D, Pycia K, Juszczak L, Pająk P (2014) Influence of cassia gum on rheological and textural properties of native potato and corn starch. Starch-Stärke 66(11–12):1060–1070

    CrossRef  CAS  Google Scholar 

  • Gallant D, Bouchet B, Baldwin P (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177–191

    CrossRef  CAS  Google Scholar 

  • Gelders G, Vanderstukken T, Goesaert H, Delcour J (2004) Amylose–lipid complexation: a new fractionation method. Carbohydr Polym 56(4):447–458

    CrossRef  CAS  Google Scholar 

  • Gelders GG, Goesaert H, Delcour JA (2006) Amylose-lipid complexes as controlled lipid release agents during starch gelatinization and pasting. J Agric Food Chem 54(4):1493–1499

    CrossRef  CAS  PubMed  Google Scholar 

  • Godet M, Tran V, Colonna P, Buleon A, Pezolet M (1995) Inclusion/exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length. Int J Biol Macromol 17:405

    CrossRef  CAS  PubMed  Google Scholar 

  • Gomes AM, da Silva CEM, Ricardo NM (2005) Effects of annealing on the physicochemical properties of fermented cassava starch (polvilho azedo). Carbohydr Polym 60(1):1–6

    CrossRef  CAS  Google Scholar 

  • Gonzalez Z, Perez E (2002) Evaluation of lentil starches modified by microwave irradiation and extrusion cooking. Food Res Int 35(5):415–420

    CrossRef  CAS  Google Scholar 

  • Gulu NB, Jideani VA, Jacobs A (2019) Functional characteristics of Bambara groundnut starch-catechin complex formed using cyclodextrins as initiators. Heliyon 5(4):e01562

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gunaratne A, Hoover R (2002) Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr Polym 49(4):425–437

    CrossRef  CAS  Google Scholar 

  • Hall DM, Sayre JG (1971) A scanning electron-microscope study of starches: PART III: miscellaneous starches. Text Res J 41(11):880–894

    CrossRef  CAS  Google Scholar 

  • Haros M, Suarez C (1999) Effect of chemical pretreatments and lactic acid on the rate of water absorption and starch yield in corn wet-milling. Cereal Chem 76(5):783–787

    CrossRef  CAS  Google Scholar 

  • Hasjim J, Ai Y, Jane J (2013) Novel applications of amylose-lipid complex as resistant starch type 5. In: Shi Y, Maningat C (eds) Resistant starch sources, applications and health benefits chapter 4. John Wiley & Sons Ltd., Chichester, pp 79–94

    CrossRef  Google Scholar 

  • Hauser H, Pascher I, Sundell S (1980) Conformation of phospholipids: crystal structure of a lysophosphatidylcholine analogue. J Mol Biol 137(3):249–264

    CrossRef  CAS  PubMed  Google Scholar 

  • Hermansson A-M, Svegmark K (1996) Developments in the understanding of starch functionality. Trends Food Sci Technol 7(11):345–353

    CrossRef  CAS  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147(2):342–347

    CrossRef  CAS  Google Scholar 

  • Hizukuri S (1993) Towards an understanding of the fine structure of starch molecules. J Starch Relat Carbohydr Enzymes 40:133–140

    CAS  Google Scholar 

  • Hizukuri S, Kaneko T, Takeda Y (1983) Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochem Biophys Acta 760(1):188–191

    CrossRef  CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45(3):253–267

    CrossRef  CAS  Google Scholar 

  • Hoover R, Hughes T, Chung H, Liu Q (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43(2):399–413

    CrossRef  CAS  Google Scholar 

  • Hoover R, Li Y, Hynes G, Senanayake N (1997) Physicochemical characterization of mung bean starch. Food Hydrocoll 11(4):401–408

    CrossRef  CAS  Google Scholar 

  • Hoover R, Sosulski F (1985) Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. Starch-Stärke 37(6):181–191

    CrossRef  CAS  Google Scholar 

  • Hoover R, Zhou Y (2003) In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes—a review. Carbohydr Polym 54(4):401–417

    CrossRef  CAS  Google Scholar 

  • Huang J, Schols HA, van Soest JJ, Jin Z, Sulmann E, Voragen AG (2007) Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches. Food Chem 101(4):1338–1345

    CrossRef  CAS  Google Scholar 

  • Huang J, Shang Z, Man J, Liu Q, Zhu C, Wei C (2015) Comparison of molecular structures and functional properties of high-amylose starches from rice transgenic line and commercial maize. Food Hydrocoll 46:172–179

    CrossRef  CAS  Google Scholar 

  • Huber K, McDonald A, BeMiller J (2006) Carbohydrate chemistry. In: Hui Y (ed) Handbook of food science, technology and engineering, vol 1. CRC Press, Taylor and Francis Group, Boca Raton, FL, pp 1–23

    Google Scholar 

  • Imberty A, Perez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27(8):1205–1221

    CrossRef  CAS  Google Scholar 

  • Jane J, Chen Y, Lee L, McPherson A, Wong K, Radosavljevic M, Kasemsuwan T (1999) Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch 1. Cereal Chem 76(5):629–637

    CrossRef  CAS  Google Scholar 

  • Jane J, Shen L, Chen J, Lim S, Kasemsuwan T, Nip W (1992) Physical and chemical studies of Taro starches and flours. Cereal Chem 69:528–535

    CAS  Google Scholar 

  • Jayakody L, Hoover R, Liu Q, Donner E (2009) Studies on tuber starches: III. Impact of annealing on the molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr Polym 76:145–153

    CrossRef  CAS  Google Scholar 

  • Jenkins P, Donald A (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17(6):315–321

    CrossRef  CAS  PubMed  Google Scholar 

  • Joshi M, Aldred P, McKnight S, Panozzo J, Kasapis S, Adhikari R, Adhikari B (2013) Physicochemical and functional characteristics of lentil starch. Carbohydr Polym 92(2):1484–1496

    CrossRef  CAS  PubMed  Google Scholar 

  • Jovanovich G, Añón MC (1999) Amylose–lipid complex dissociation. A study of the kinetic parameters. Biopolymers 49(1):81–89

    CrossRef  CAS  Google Scholar 

  • Kaptso GK, Njintang NY, Nguemtchouin MGM, Amungwa AF, Scher J, Hounhouigan J, Mbofung CM (2016) Characterization of morphology and structural and thermal properties of legume flours: cowpea (Vigna unguiculata L. Walp) and bambara groundnut (Vigna subterranea L. Verdc.) varieties. Int J Food Eng 12(2):139–152

    CrossRef  CAS  Google Scholar 

  • Kaptso K, Njintang Y, Nguemtchouin M, Scher J, Hounhouigan J, Mbofung C (2014) Physicochemical and micro-structural properties of flours, starch and proteins from two varieties of legumes: bambara groundnut (Vigna subterranea). J Food Sci Technol 52(8):4915–4924

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Karim AA, Norziah M, Seow C (2000) Methods for the study of starch retrogradation. Food Chem 71(1):9–36

    CrossRef  CAS  Google Scholar 

  • Karkalas J, Ma S, Morrison WR, Pethrick RA (1995) Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydr Res 268(2):233–247

    CrossRef  CAS  Google Scholar 

  • Kaur B, Ariffin F, Bhat R, Karim AA (2012) Progress in starch modification in the last decade. Food Hydrocoll 26(2):398–404

    CrossRef  CAS  Google Scholar 

  • Kawai K, Takato S, Sasaki T, Kajiwara K (2012) Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocoll 27(1):228–234

    CrossRef  CAS  Google Scholar 

  • Kim Y-Y, Woo KS, Chung H-J (2018) Starch characteristics of cowpea and mungbean cultivars grown in Korea. Food Chem 263:104–111

    CrossRef  CAS  PubMed  Google Scholar 

  • Krog N (1971) Amylose complexing effect of food-grade emulsifiers. Starch-Stärke 23(6):206–210

    CrossRef  CAS  Google Scholar 

  • Lagendijk J, Pennings H (1970) Relation between complex formation of starch with monoglycerides and firmness of bread. Cereal Sci Today 15(10):354–365

    Google Scholar 

  • Lehmann U, Robin F (2007) Slowly digestible starch–its structure and health implications: a review. Trends Food Sci Technol 18(7):346–355

    CrossRef  CAS  Google Scholar 

  • Lesmes U, Barchechath J, Shimoni E (2008) Continuous dual feed homogenization for the production of starch inclusion complexes for controlled release of nutrients. Innov Food Sci Emerg Technol 9(4):507–515

    CrossRef  CAS  Google Scholar 

  • Li E, Hasjim J, Singh V, Tizzotti M, Godwin I, Gilbert R (2013) Insights into sorghum starch biosynthesis from structure changes induced by different growth temperatures. Cereal Chem 90:223–230

    CrossRef  CAS  Google Scholar 

  • Li J-Y, Yeh A-I (2001) Relationships between thermal, rheological characteristics and swelling power for various starches. J Food Eng 50(3):141–148

    CrossRef  Google Scholar 

  • Li L, Hong Y, Gu Z, Cheng L, Li Z, Li C (2018) Effect of a dual modification by hydroxypropylation and acid hydrolysis on the structure and rheological properties of potato starch. Food Hydrocoll 77:825–833

    CrossRef  CAS  Google Scholar 

  • Li Y, Hu A, Zheng J, Wang X (2019) Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power. Int J Biol Macromol 141:76–84

    CrossRef  CAS  PubMed  Google Scholar 

  • Malumba P, Odjo S, Boudry C, Danthine S, Bindelle J, Beckers Y, Béra F (2014) Physicochemical characterization and in vitro assessment of the nutritive value of starch yield from corn dried at different temperatures. Starch-Stärke 66(7–8):738–748

    CrossRef  CAS  Google Scholar 

  • Marinopoulou A, Papastergiadis E, Raphaelides SN, Kontominas MG (2016) Structural characterization and thermal properties of amylose-fatty acid complexes prepared at different temperatures. Food Hydrocoll 58:224–234

    CrossRef  CAS  Google Scholar 

  • Mathobo VM, Silungwe H, Ramashia SE, Anyasi TA (2020) Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches—a review. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04520-4

  • McPherson A, Jane J (1999) Physicochemical properties of selected root and tuber starches. Carbohydr Polym 40:57–70

    CrossRef  CAS  Google Scholar 

  • Meng S, Ma Y, Cui J, Sun DW (2014a) Preparation of corn starch–fatty acid complexes by high-pressure homogenization. Starch-Stärke 66(9–10):809–817

    CrossRef  CAS  Google Scholar 

  • Meng S, Ma Y, Sun D-W, Wang L, Liu T (2014b) Properties of starch-palmitic acid complexes prepared by high-pressure homogenization. J Cereal Sci 59(1):25–32

    CrossRef  CAS  Google Scholar 

  • Meuser F, Pahne N, Möller M (1995) Extraction of high amylose starch from wrinkled peas. Starch-Stärke 47(2):56–61

    CrossRef  CAS  Google Scholar 

  • Meyer K, Bernfeld P (1940) Research on starch. V Amylopectin. Helv Chim Acta 23:875–885

    CrossRef  CAS  Google Scholar 

  • Mweta DE, Labuschagne MT, Koen E, Benesi IR, Saka JD (2008) Some properties of starches from cocoyam (Colocasia esculenta) and cassava (Manihot esculenta Crantz.) grown in Malawi. Afr J Food Sci 2(8):102–111

    Google Scholar 

  • Naidoo K, Amonsou EO, Oyeyinka SA (2015) In vitro digestibility and some physicochemical properties of starch from wild and cultivated amadumbe corms. Carbohydr Polym 125:9–15

    CrossRef  CAS  PubMed  Google Scholar 

  • Noda T, Takahata Y, Sato T, Ikoma H, Mochida H (1996) Physicochemical properties of starches from purple and orange fleshed sweet potato roots at two levels of fertilizer. Starch-Stärke 48(11–12):395–399

    CrossRef  CAS  Google Scholar 

  • Obiro C, Ray S, Emmambux M (2012a) Occurrence of amylose–lipid complexes in teff and maize starch biphasic pastes. Carbohydr Polym 90(1):616–622

    CrossRef  CAS  Google Scholar 

  • Obiro W, Ray S, Emmambux M (2012b) V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev Intl 28(4):412–438

    CrossRef  CAS  Google Scholar 

  • Ocloo FC, Minnaar A, Emmambux NM (2016) Effects of stearic acid and gamma irradiation, alone and in combination, on pasting properties of high amylose maize starch. Food Chem 190:12–19

    CrossRef  CAS  PubMed  Google Scholar 

  • Odeniyi M, Omoteso OA, Adebisi AO (2017) Solid state characterization and rheological properties of native and modified Bambara groundnut (Vigna subterranean) starches. J Excip Food Chem 8(3):42–51

    Google Scholar 

  • Ojimelukwe PC (1999) Cooking characteristics of four cultivars of bambara groundnuts seeds and starch isolate. J Food Biochem 23(1):109–117

    CrossRef  Google Scholar 

  • Oyeyinka SA, Adegoke R, Oyeyinka AT, Salami KO, Olagunju OF, Kolawole FL, Joseph JK, Bolarinwa IF (2018) Effect of annealing on the functionality of Bambara groundnut (Vigna subterranea) starch–palmitic acid complex. Int J Food Sci Technol 53(2):549–555

    CrossRef  CAS  Google Scholar 

  • Oyeyinka SA, Amonsou EO (2020) Composition, pasting and thermal properties of flour and starch derived from amadumbe with different corm sizes. J Food Sci Technol 57:3688–3695

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyeyinka SA, Oyeyinka AT (2018) A review on isolation, composition, physicochemical properties and modification of Bambara groundnut starch. Food Hydrocoll 75:62–71

    CrossRef  CAS  Google Scholar 

  • Oyeyinka SA, Singh S, Adebola PO, Gerrano AS, Amonsou EO (2015) Physicochemical properties of starches with variable amylose contents extracted from bambara groundnut genotypes. Carbohydr Polym 133:171–178

    CrossRef  CAS  PubMed  Google Scholar 

  • Oyeyinka SA, Singh S, Amonsou EO (2016a) Physicochemical properties of starches extracted from bambara groundnut landraces. Starch-Stärke 69(1600089):1–8

    Google Scholar 

  • Oyeyinka SA, Singh S, Ma Y, Amonsou EO (2016b) Effect of high-pressure homogenization on structural, thermal and rheological properties of bambara starch complexed with different fatty acids. RSC Adv 6(83):80174–80180

    CrossRef  CAS  Google Scholar 

  • Oyeyinka SA, Singh S, Venter SL, Amonsou EO (2016c) Effect of lipid types on complexation and some physicochemical properties of bambara groundnut starch. Starch-Stärke 69(1600158):1–10

    Google Scholar 

  • Oyeyinka SA, Singh S, Ying M, Amonsou EO (2016d) Influence of high-pressure homogenization on the physicochemical properties of bambara starch complexed with lysophosphatidylcholine. LWT-Food Sci Technol 74:120–127

    CrossRef  CAS  Google Scholar 

  • Oyeyinka SA, Umaru E, Olatunde SJ, Joseph JK (2019) Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Biosci 28:36–41

    CrossRef  CAS  Google Scholar 

  • Poulter NH (1981) Properties of some protein fractions from bambara groundnut [Voandzeia subterranea (L.) Thouars]. J Sci Food Agric 32(1):44–50

    CrossRef  CAS  Google Scholar 

  • Putseys J, Lamberts L, Delcour J (2010) Amylose-inclusion complexes: formation, identity and physico-chemical properties. J Cereal Sci 51(3):238–247

    CrossRef  CAS  Google Scholar 

  • Radosavljevic M, Jane J, Johnson L (1998) Isolation of amaranth starch by diluted alkaline-protease treatment. Cereal Chem 75(2):212–216

    CrossRef  CAS  Google Scholar 

  • Raphaelides SN, Georgiadis N (2006) Effect of fatty acids on the rheological behaviour of maize starch dispersions during heating. Carbohydr Polym 65(1):81–92

    CrossRef  CAS  Google Scholar 

  • Raphaelides SN, Karkalas J (1988) Thermal dissociation of amylose-fatty acid complexes. Carbohydr Res 172(1):65–82

    CrossRef  CAS  Google Scholar 

  • Ratnayake W, Hoover R, Shahidi F, Perera C, Jane J (2001) Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem 74(2):189–202

    CrossRef  CAS  Google Scholar 

  • Richardson G, Kidman S, Langton M, Hermansson A-M (2004) Differences in amylose aggregation and starch gel formation with emulsifiers. Carbohydr Polym 58(1):7–13

    CrossRef  CAS  Google Scholar 

  • Robin J (1974) Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem 51:389–406

    CAS  Google Scholar 

  • Samarakoon E, Waduge R, Liu Q, Shahidi F, Banoub J (2020) Impact of annealing on the hierarchical structure and physicochemical properties of waxy starches of different botanical origins. Food Chem 303:125344

    CrossRef  CAS  PubMed  Google Scholar 

  • Sang U, Bean S, Seib PA, Pedersen J, Shi Y-C (2008) Structure and functional properties of sorghum starches differing in amylose content. J Agric Food Chem 56:6680–6685

    CrossRef  CAS  PubMed  Google Scholar 

  • Sathe S, Rangnekar P, Deshpande S, Salunkhe D (1982) Isolation and partial characterization of black gram (Phaseolus mungo L) starch. J Food Sci 47(5):1524–1538

    CrossRef  CAS  Google Scholar 

  • Sathe S, Salunkhe D (1981) Isolation, partial characterization and modification of the great northern bean (Phaseolus vulgaris L.) starch. J Food Sci 46(2):617–621

    CrossRef  CAS  Google Scholar 

  • Singh J, Singh N, Saxena S (2002) Effect of fatty acids on the rheological properties of corn and potato starch. J Food Eng 52(1):9–16

    CrossRef  Google Scholar 

  • Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81(2):219–231

    CrossRef  CAS  Google Scholar 

  • Sirivongpaisal P (2008) Structure and functional properties of starch and flour from Bambara groundnut. Sonklanakarin J Sci Technol 30(1):51–56

    Google Scholar 

  • Skrabanja V, Liljeberg HG, Hedley CL, Kreft I, Björck IM (1999) Influence of genotype and processing on the in vitro rate of starch hydrolysis and resistant starch formation in peas (Pisum sativum L.). J Agric Food Chem 47(5):2033–2039

    CrossRef  CAS  PubMed  Google Scholar 

  • Socorro M, Levy-Benshimol A, Tovar J (1989) In vitro digestibility of cereal and legume (Phaseolus vulgaris) starches by bovine, porcine and human pancreatic α-amylases effect of dietary fiber. Starch-Stärke 41(2):69–71

    CrossRef  CAS  Google Scholar 

  • Staudinger H (1937) Über Cellulose, Stärke und Glycogen. Naturwissenschaften 25(42):673–681

    CrossRef  CAS  Google Scholar 

  • Tang MC, Copeland L (2007) Analysis of complexes between lipids and wheat starch. Carbohydr Polym 67(1):80–85

    CrossRef  CAS  Google Scholar 

  • Tester R, Morrison W (1990a) Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem 67(6):558–563

    CAS  Google Scholar 

  • Tester RF, Morrison WR (1990b) Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem 67(6):551–557

    CAS  Google Scholar 

  • Tufvesson F, Wahlgren M, Eliasson AC (2003) Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch-Stärke 55(2):61–71

    CrossRef  CAS  Google Scholar 

  • Vanier NL, El Halal SLM, Dias ARG, da Rosa Zavareze E (2017) Molecular structure, functionality and applications of oxidized starches: a review. Food Chem 221:1546–1559

    CrossRef  CAS  PubMed  Google Scholar 

  • Waduge R, Hoover R, Vasanthan T, Gao J, Li J (2006) Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Res Int 39:59–77

    CrossRef  CAS  Google Scholar 

  • Waliszewski KN, Aparicio MA, Bello LSA, Monroy JA (2003) Changes of banana starch by chemical and physical modification. Carbohydr Polym 52(3):237–242

    CrossRef  CAS  Google Scholar 

  • Wang S, Chao C, Cai J, Niu B, Copeland L, Wang S (2020) Starch–lipid and starch–lipid–protein complexes: a comprehensive review. Compr Rev Food Sci Food Saf:1–24. https://doi.org/10.1111/1541-4337.12550

  • Wang S, Copeland L (2013) Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food Funct 4(11):1564–1580

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang S, Li C, Copeland L, Niu Q, Wang S (2015) Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14(5):568–585

    CrossRef  CAS  Google Scholar 

  • Wang X, Luo Z, Xiao Z (2014) Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr Polym 101:1027–1032

    CrossRef  CAS  PubMed  Google Scholar 

  • Waterschoot J, Gomand SV, Fierens E, Delcour JA (2015) Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Stärke 67(1–2):14–29

    CrossRef  CAS  Google Scholar 

  • Whelan W (1971) Enzymic explorations of the structures of starch and glycogen. Biochem J 122(5):609

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wokadala OC, Ray SS, Emmambux MN (2012) Occurrence of amylose–lipid complexes in teff and maize starch biphasic pastes. Carbohydr Polym 90(1):616–622

    CrossRef  CAS  PubMed  Google Scholar 

  • Won S-Y, Choi W, Lim HS, Cho K-Y, Lim S-T (2000) Viscoelasticity of cowpea starch gels. Cereal Chem 77(3):309–314

    CrossRef  CAS  Google Scholar 

  • Yamada T, Kato T, Tamaki S, Teranishi K, Hisamatsu M (1998) Introduction of fatty acids to starch granules by ultra-high-pressure treatment. Starch-Stärke 50(11–12):484–486

    CrossRef  CAS  Google Scholar 

  • Yeh A-I, Chan T-Y, Chuang GC-C (2009) Effect of water content and mucilage on physico-chemical characteristics of Yam (Discorea alata Purpurea) starch. J Food Eng 95(1):106–114

    CrossRef  CAS  Google Scholar 

  • Zabar S, Lesmes U, Katz I, Shimoni E, Bianco-Peled H (2010) Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method. Food Hydrocoll 24(4):347–357

    CrossRef  CAS  Google Scholar 

  • Zhang B, Huang Q, Luo F-X, Fu X (2012) Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocoll 28(1):174–181

    CrossRef  CAS  Google Scholar 

  • Zhou Z, Robards K, Helliwell S, Blanchard C (2007) Effect of the addition of fatty acids on rice starch properties. Food Res Int 40(2):209–214

    CrossRef  CAS  Google Scholar 

  • Zhu F (2014) Structure, physicochemical properties, modifications, and uses of sorghum starch. Compr Rev Food Sci Food Saf 13:597–610

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samson A. Oyeyinka or Eric O. Amonsou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oyeyinka, S.A., Kayitesi, E., Diarra, S.S., Adedeji, A.A., Amonsou, E.O., Singh, S. (2021). Bambara Groundnut Starch. In: Oyeyinka, S.A., Ade-Omowaye, B.I.O. (eds) Food and Potential Industrial Applications of Bambara Groundnut. Springer, Cham. https://doi.org/10.1007/978-3-030-73920-1_6

Download citation