Skip to main content

The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12707))

Abstract

We consider fundamental algorithmic number theoretic problems and their relation to a class of block structured Integer Linear Programs (ILPs) called 2-stage stochastic. A 2-stage stochastic ILP is an integer program of the form \(\min \{c^T x \mid \mathcal {A} x = b, \ell \le x \le u, x \in \mathbb {Z}^{r + ns} \}\) where the constraint matrix \(\mathcal {A} \in \mathbb {Z}^{nt \times r +ns}\) consists of n matrices \(A_i \in \mathbb {Z}^{t \times r}\) on the vertical line and n matrices \(B_i \in \mathbb {Z}^{t \times s}\) on the diagonal line aside. First, we show a stronger hardness result for a number theoretic problem called Quadratic Congruences where the objective is to compute a number \(z \le \gamma \) satisfying \(z^2 \equiv \alpha \bmod \beta \) for given \(\alpha , \beta , \gamma \in \mathbb {Z}\). This problem was proven to be NP-hard already in 1978 by Manders and Adleman. However, this hardness only applies for instances where the prime factorization of \(\beta \) admits large multiplicities of each prime number. We circumvent this necessity by proving that the problem remains NP-hard, even if each primenumber only occurs constantly often.

Then, using this new hardness result for the Quadratic Congruences problem, we prove a lower bound of \(2^{2^{\delta (s+t)}} |I|^{O(1)}\) for some \(\delta > 0\) for the running time of any algorithm solving 2-stage stochastic ILPs assuming the Exponential Time Hypothesis (ETH). Here, |I| is the encoding length of the instance. This result even holds if r, \(||b||_{\infty }\), \(||c||_{\infty }, ||\ell ||_{\infty }\) and the largest absolute value \(\varDelta \) in the constraint matrix \(\mathcal {A}\) are constant. This shows that the state-of-the-art algorithms are nearly tight. Further, it proves the suspicion that these ILPs are indeed harder to solve than the closely related \(n\)-fold ILPs where the contraint matrix is the transpose of \(\mathcal A\).

This work was supported by DFG project JA 612/20-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albareda-Sambola, M., van der Vlerk, M.H., Fernández, E.: Exact solutions to a class of stochastic generalized assignment problems. Eur. J. Oper. Res. 173(2), 465–487 (2006)

    Article  MathSciNet  Google Scholar 

  2. Brand, C., Koutecký, M., Ordyniak, S.: Parameterized algorithms for MILPs with small treedepth. CoRR, abs/1912.03501 (2019)

    Google Scholar 

  3. Chen, L., Koutecký, M., Xu, L., Shi, W.: New bounds on augmenting steps of block-structured integer programs. In ESA, vol. 173 of LIPIcs, pp. 33:1–33:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  4. Cslovjecsek, J., Eisenbrand, F., Hunkenschröder, C., Weismantel, R., Rohwedder, L.: Block-structured integer and linear programming in strongly polynomial and near linear time. CoRR, abs/2002.07745v2 (2020)

    Google Scholar 

  5. Cslovjecsek, J., Eisenbrand, F., Pilipczuk, M., Venzin, M., Weismantel, R.: Efficient sequential and parallel algorithms for multistage stochastic integer programming using proximity. CoRR, abs/2012.11742 (2020)

    Google Scholar 

  6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  7. Dempster, M.A.H., Fisher, M.L., Jansen, L., Lageweg, B.J., Lenstra, J.K., Kan, A.H.G.R.: Analysis of heuristics for stochastic programming: results for hierarchical scheduling problems. Math. Oper. Res. 8(4), 525–537 (1983)

    Article  MathSciNet  Google Scholar 

  8. Eisenbrand, F., Hunkenschröder, C., Klein, K.-M., Koutecký, M., Levin, A., Onn, S.: An algorithmic theory of integer programming. CoRR, abs/1904.01361 (2019)

    Google Scholar 

  9. Gavenčak, T., Koutecký, M., Knop, D.: Integer programming in parameterized complexity: five miniatures. Discrete Optim., 100596 (2020)

    Google Scholar 

  10. Hemmecke, R., Köppe, M., Weismantel, R.: A polynomial-time algorithm for optimizing over N-Fold 4-block decomposable integer programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 219–229. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13036-6_17

    Chapter  MATH  Google Scholar 

  11. Hemmecke, R., Schultz, R.: Decomposition of test sets in stochastic integer programming. Math. Program. 94(2–3), 323–341 (2003)

    Article  MathSciNet  Google Scholar 

  12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  14. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. GTM, vol. 84. Springer, New York (1990). https://doi.org/10.1007/978-1-4757-2103-4

    Book  MATH  Google Scholar 

  15. Jansen, K., Klein, K.-M., Lassota, A.: The double exponential runtime is tight for 2-stage stochastic ILPs (2020). http://arxiv.org/abs/2008.12928arXiv:2008.12928

  16. Jansen, K., Lassota, A., Rohwedder, L.: Near-linear time algorithm for n-fold ILPs via color coding. In: ICALP, vol. 132 of LIPIcs, pp. 75:1–75:13 (2019)

    Google Scholar 

  17. Kall, P., Wallace, S.W.: Stochastic Programming. Springer (1994). https://doi.org/10.1007/978-3-642-88272-2.pdf

  18. Klein, K.-M.: About the complexity of two-stage stochastic IPs. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 252–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_20

    Chapter  Google Scholar 

  19. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer linear programming with few constraints. In: STACS, vol. 126 of LIPIcs, pp. 44:1–44:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  20. Küçükyavuz, S., Sen, S.: An introduction to two-stage stochastic mixed-integer programming. In: Leading Developments from INFORMS Communities, pp. 1–27. INFORMS (2017)

    Google Scholar 

  21. Laporte, G., Louveaux, F.V., Mercure, H.: A priori optimization of the probabilistic traveling salesman problem. Oper. Res. 42(3), 543–549 (1994)

    Article  MathSciNet  Google Scholar 

  22. De Loera, J.A., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming. Discret. Optim. 5(2), 231–241 (2008)

    Article  MathSciNet  Google Scholar 

  23. Manders, K.L., Adleman, L.M.: NP-complete decision problems for binary quadratics. J. Comput. Syst. Sci. 16(2), 168–184 (1978)

    Article  MathSciNet  Google Scholar 

  24. Schultz, R., Stougie, L., Van Der Vlerk, M.H.: Two-stage stochastic integer programming: a survey. Stat. Neerl. 50(3), 404–416 (1996)

    Article  MathSciNet  Google Scholar 

  25. Wagon, S.: Mathematica in action. Springer Science and Business Media (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Lassota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jansen, K., Klein, KM., Lassota, A. (2021). The Double Exponential Runtime is Tight for 2-Stage Stochastic ILPs. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73879-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73878-5

  • Online ISBN: 978-3-030-73879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics