Skip to main content

Knowledge Discovery by Compensatory Fuzzy Rough Predicates

  • Chapter
  • First Online:
Computational Intelligence for Business Analytics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 953))

  • 439 Accesses

Abstract

Compensatory Fuzzy Logic (CFL) are fuzzy logic systems, which satisfy axiomatic properties of bivalent logic and Decision Theory simultaneously. There is a coherence between CFL and other theories like classical logic, t-norm, and t-conorm based fuzzy logic, mathematical statistics, and decision theory. Those properties are the basis of transdisciplinary interpretability in relation to natural language. Hence, CFL has the advantage to model easily the problems by using natural and professional language. The main objective of this paper is to propose a method, inspired by rough sets theory (RST), to approximate decision classes by means of two clusters, defined by logic predicates formed on condition attributes. The importance of the method is mainly that it is a compliment, and not a substitute, of other methods for forecasting, in the sense that its results are more useful in the way of linguistic values than in numerical values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965). https://doi.org/10.2307/2272014

    Article  MATH  Google Scholar 

  2. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 341–356 (1982). https://doi.org/10.1007/BF01001956

    Article  MATH  Google Scholar 

  3. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, Springer Science and Business Media (1991)

    Book  Google Scholar 

  4. Zadeh, L.: The concept of a Linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(3), 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Zadeh, L.: From computing with numbers to computing with words-from manipulation of measure to manipulation of perceptions. Int. J. Appl. Math. Comput. Sci. 3, 307–324 (2002). https://doi.org/10.1007/978-3-7908-1792-8_5

    Article  MATH  Google Scholar 

  6. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen Syst. 17(2–3), 191–209 (1990). https://doi.org/10.1080/03081079008935107

    Article  MATH  Google Scholar 

  7. Agarwal, M., Palpanas, T.: Linguistic rough set. Int. J. Mach. Learn. Cybern. 7, 953–966 (2014). https://doi.org/10.1007/s13042-014-0297-2

    Article  Google Scholar 

  8. Ahmadi, F., Maghooli, K.: Missing data analysis: a survey on the effect of different K-means clustering algorithms. Am. J. Signal Process. 4(3), 65–70 (2014)

    Google Scholar 

  9. Chen, M., Ludwig, S.: Fuzzy decision tree using soft discretization and a genetic algorithm based feature selection method. 2013 World Congress on Nature and Biologically Inspired Computing, pp. 238–244. IEEE, Fargo (2013). https://doi.org/10.1109/NaBIC.2013.6617869

  10. Liang, D., Liu, D., Pedrycz, W., Hu, P.: Triangular fuzzy decision-theoretic rough sets. Int. J. Approximate Reasoning 54(8), 1087–1106 (2013). https://doi.org/10.1016/j.ijar.2013.03.014

    Article  MATH  Google Scholar 

  11. Moewes, C., Kruse, R.: Evolutionary fuzzy rules for ordinal binary classification with monotonicity constraints. In: Soft Computing: State of the Art Theory, vol. 291. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34922-5_8

  12. Slowinski, R., Greco, S., Matarazzo, B.: Rough sets in decision making. In: Meyers R. (eds.). In Computational Complexity. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1800-9_168

  13. Espín, R., González, E., Fernández, E., Martínez, M.: Compensatory fuzzy logic inference. In: Soft Computing for Business Intelligence, pp. 25–43. Springer, Heidelberg (2014)

    Google Scholar 

  14. Martínez, M., Espín, R., López, V., Rosete, A.: Discovering knowledge by fuzzy predicates in compensatory fuzzy logic using metaheuristic algorithms. In: Soft Computing for Business Intelligence, pp. 161–174. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53737-0_11

  15. Espín, R., Fernández, E., González, E.: Compensatory fuzzy logic: a frame for reasoning and modeling preference knowledge in intelligent systems. In: Espín, R., Pérez, R., Cobo, A., Marx, J., Valdés, A. (eds.). Soft Computing for Business Intelligence, pp. 3–23. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53737-0_1

  16. Yao, Y.: Combination of rough and fuzzy sets based on α-level sets. In: Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 301–321. Springer, Boston (1997). https://doi.org/10.1007/978-1-4613-1461-5_15

  17. Rivera, G., Cisneros, L., Sánchez-Solís, P., Rangel-Valdez, N., Rodas-Osollo, J.: Genetic algorithm for scheduling optimization considering heterogeneous containers: a real-world case study. Axioms 9(1), 27 (2020). https://doi.org/10.3390/axioms9010027

    Article  Google Scholar 

  18. Alvarado, O., Castro, B., González, L., Rivera, G., Rodas-Osollo, J., Sánchez-Solís, J.: Metaheuristic-based optimization of treated water distribution in a Mexican City. Aplicaciones Recientes en la Investigación de Operaciones. Pp. 19–30. Universidad Autónoma de Coahuila, Coahuila (2020)

    Google Scholar 

  19. Rivera, G., Rodas-Osollo, J., Bañuelos, P., Quiroz, M., Lopez, M.: A genetic algorithm for surgery scheduling optimization in a Mexican public hospital. Recent advances in artificial intelligence research and development. In: Aguiló, I., Alquézar, R., Angulo, C., Ortiz, A. (eds.) Frontiers in Artificial Intelligence and Applications, vol. 300, pp. 269–274. IOS Press, Amsterdam (2017). https://doi.org/10.3233/978-1-61499-806-8-269

  20. Rosete, A., Ceruto, T., Espín, R. Marx, J.: A general method for knowledge discovery using compensatory fuzzy logic and metaheuristics. In: Espín, R., Marx, J., Racet, A. (eds.). Towards a Transdisciplinary Technology for Business Intelligence, pp. 240–268. Shaker (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Espin-Andrade, R.A., González, E., Bello, R., Pedrycz, W. (2021). Knowledge Discovery by Compensatory Fuzzy Rough Predicates. In: Pedrycz, W., Martínez, L., Espin-Andrade, R.A., Rivera, G., Marx Gómez, J. (eds) Computational Intelligence for Business Analytics. Studies in Computational Intelligence, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-030-73819-8_11

Download citation

Publish with us

Policies and ethics