Skip to main content

Reduction of Hexavalent Chromium Using Microbial Remediation: A Case Study of Pauni and Taka Chromite Mines, Central India

  • Chapter
  • First Online:
Innovations in Sustainable Mining

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 617 Accesses

Abstract

Chromium is a naturally occurring heavy metal, valued for its resistance to corrosion, oxidation, and enhancement of hardenability. Such qualities make it important for various industries, especially steel making. Discharge of chromium from industrial effluent is one of the major causes of chromium contamination in the environment which is mainly present in its hexavalent state. Hexavalent chromium is highly soluble in nature and its carcinogenicity and mutagenicity make it highly toxic for humans, animals, plants, and microorganisms. Elevated levels of chromium in the environment inhibit most of the microorganisms, but also promote the selection of resistant species. Microbes belonging to such metal enriched area show discrete characteristics as well as discrete mechanism for dealing with such toxic conditions. Studies have shown that these microbes have unique quality of reducing chromium toxicity. Biotransformation of Cr (VI) to Cr (III) using bacteria is the most practically efficient approach. Ability of the bacteria to tolerate the chromium and to reduce it further into more tolerable species makes it very useful agent for remediation of the chromium contaminated soils. Important bacterial genus reported till date include, Pseudomonas spp, Enterobacter spp, Escherichia coli, Ochrobactrum sp. Lysinibacillus spp, Acinetobacter spp. Microbacterium spp, Rhodococcus spp, and Bacillus spp. We conducted a study in the chromium-rich soils of small chromite mines located at Taka in Nagpur and Pauni in Bhandara districts of Maharashtra in Central India. The aim of this study was the isolation and identification of chromium tolerant bacterial species having the potential for bioremediation. Our study has indicated that the isolated bacterial species, Lysinibacillus macroides (LC183868), Acinetobactor pittii (LC155825) and Bacillus safensis (LC155823), can tolerate high chromium concentration and showed promising results when tested for chromium reduction ability. This study is replicable and holds great promise for bioremediation of chromium-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koleli N, Demir A (2016) Chromite environmental materials and waste

    Google Scholar 

  2. Lunk JH (2015) Discovery, properties and applications of chromium and its compounds. Chem Texts 1:6

    Google Scholar 

  3. Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Veter Med 52:1–18

    Article  CAS  Google Scholar 

  4. Spears JW, Whisnant CS, Huntington GB et al (2012) Chromium propionate enhances insulin sensitivity in growing cattle. J Dairy Sci 95:2037–2045

    Article  CAS  Google Scholar 

  5. Mamyrbaev AA, Dzharkenov TA, Imangazina ZA, Satybaldieva UA (2015) Mutagenic and carcinogenic actions of chromium and its compounds. Environ Health Prev Med 20(3):159–167

    Article  CAS  Google Scholar 

  6. Wilbur S, Abadin H, Fay M, Yu D et al (2012) Toxicological Profile for Chromium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US)

    Google Scholar 

  7. Lim JH, Kim HS, Park YM et al (2010) A case of chromium contact dermatitis due to exposure from a golf glove. Annal Dermatol 22(1):63–65

    Article  Google Scholar 

  8. Bregnbak B, Jeanne D, Morten S, Zachariae C et al (2015) Chromium allergy and dermatitis: prevalence and main findings. Contact Dermat 73:261–280

    Article  CAS  Google Scholar 

  9. Buters J, Biedermann T (2017) Chromium (VI) contact dermatitis: getting closer to understanding the underlying mechanisms of toxicity and sensitization. J Invest Dermatol 137:274–277

    Article  CAS  Google Scholar 

  10. Costa M, Hong S, Brocato J (2015) Oral chromium exposure and toxicity. Curr Envir Health Rpt 2:295–303

    Article  Google Scholar 

  11. Indian Minerals Yearbook (2017) (Part- III: Mineral Reviews) 56th Edition chromite. Government of india, ministry of mines, indian bureau of mines

    Google Scholar 

  12. Lunk H-J (2015) Discovery, properties and applications of chromium and its compounds. Chem Texts 1:1–17

    Google Scholar 

  13. Sahu KC, Godgul G (1995) Chromium contamination from chromite mine. Environ Geol 25:251–257

    Article  Google Scholar 

  14. Tiwary RK, Dhakate R, Ananda V, Singh VS (2005) Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environ Geol 48:420–429

    Article  CAS  Google Scholar 

  15. Shanker K, Cervantes C, Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  16. Rai V, Vajpayee P, Singh S, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline, level and eugenol content of Ocimum tenuiflorum L. Plant Sci 1159–1169

    Google Scholar 

  17. Shahid M, Shamshad S, Rafiq M, Khalid S et al (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  CAS  Google Scholar 

  18. Smith S, Peterson P, Kwan K (1989) Chromium accumulation, transport and toxicity in plants. Toxicol Environ Chem 24:241–251

    Article  CAS  Google Scholar 

  19. Panda SK, Choudhury S (2005) Chromium stress in plants Braz. J Plant Physiol 17:95–102

    CAS  Google Scholar 

  20. Aktaruzzaman M, Fakhruddin A, Chowdhury M et al (2013) Accumulation of heavy metals in soil and their transfer to leafy vegetables in the region of dhaka aricha highway, savar, bangladesh Pakistan. J Biol Sci 16:332–338

    CAS  Google Scholar 

  21. Datta J, Bandhyopadhyay A, Banerjee A (2011) Phytotoxic effect of chromium on the germination, seedling, growth of some wheat (Triticum aestivum L.) cultivars under laboratory condition. J Agricul Technol 7:395–402

    Google Scholar 

  22. Nagarajan M, Sankar K (2014) Effect of chromium on growth, biochemicals and nutrient accumulation of paddy (Oryza sativa L.). Int Lett Natural Sci 23:63–71

    Article  Google Scholar 

  23. Andaleeb F, Anjum M, Ashraf M, Khalid Z (2008) Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J Environ Sci 20:1475–1480

    Article  Google Scholar 

  24. Vajpayee P, Tripathi RD, Rai U, Ali M, Singh S (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    Article  CAS  Google Scholar 

  25. Hooda S, Yibing S (2010) Chromium, Nickel and cobalt: trace elements in soil. s.l. Wiley, pp 19–471

    Google Scholar 

  26. Zhang X, Zhang X, ZhangL Chen Q, Yang Z et al (2012) XRCC1 Arg399Gln was associated with repair capacity for DNA damage induced by occupational chromium exposure. BMC Res Notes 5:1–7

    Google Scholar 

  27. Gibb HJ, Lees PS, Pinsky PF, Rooney BC (2000) Clinical findings of irritation among chromium chemical production workers. Am J Ind Med 38(2):127–131

    Article  CAS  Google Scholar 

  28. Halasova E, Matakova T, Kavcova E et al (2009) Human lung cancer and hexavalent chromium exposure. Human lung cancer and hexavalent chromium exposure. Neuro Endocrinol Lett 182–185

    Google Scholar 

  29. Singh VP (2005) metal toxicity and tolerance in plants and animals. SARUP & SONS, New Delhi

    Google Scholar 

  30. Pan X, Hu J, Xia W, Zhang B et al (2017) Prenatal chromium exposure and risk of preterm birth: a cohort study in Hubei, China. Nature Sceint Rep 7:1–8

    Google Scholar 

  31. Saxena DK, Murthy RC, Lal B et al (1990) Effect of hexavalent chromium on testicular maturation in the Rat. Reprod Toxicol 4:223–228

    Article  CAS  Google Scholar 

  32. Assem L, Zhu H (2007) Chromium -Toxicological overview. Institute of Environment and Health, Cranfield University, pp 1–14

    Google Scholar 

  33. Igiri EB, Okoduwa SR, Idoko GO et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol

    Google Scholar 

  34. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecot Environ Saf 198–207

    Google Scholar 

  35. Zahoor A, Rehman A (2009) Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820

    Article  Google Scholar 

  36. Congeevarama S, Dhanarani S, Park J et al (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  Google Scholar 

  37. Acevedo-Aguilar FJ, Espino-Saldaña AE, Leon-Rodriguez IL et al (2006) Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Canadian J Microbiol 52:809–815

    Article  CAS  Google Scholar 

  38. Baldi F, Vaughan AM, Olson GJ (1990) Chromium (VI) resistant yeast isolated from a sewage treatment plant receiving tannery wastes. Appl Environ Microbiol 56:913–918

    Article  CAS  Google Scholar 

  39. Han X, Shan YW, Wong MH, Tama NFY (2007) Biosorption and bioreduction of Cr (VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 146:65–72

    Article  CAS  Google Scholar 

  40. Dixit RW, Malaviya D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes 7:2189–2212

    Google Scholar 

  41. Wu G, Kang H, Zhang X et al (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–3

    Article  CAS  Google Scholar 

  42. Schulz S, Brankatschk R, Dumig A et al (2013) The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10:3983–3996

    Article  Google Scholar 

  43. Konovalova VV, Dmytrenko GM, Nigmatullin RR et al (2003) Chromium (VI) Reduction in Membrane Bioreactor with Immobilized Psedo-monas Cells. Enzyme Microbial Technol 33:899–907

    Article  CAS  Google Scholar 

  44. Garbisu C, Alkorta I, Lama MJ, Serra JL (1998) Aero-bic Chromate Reduction by Bacillus Subtilis. Biodegra-dation 9:133–141

    Article  CAS  Google Scholar 

  45. Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    Article  CAS  Google Scholar 

  46. Michel C, Brugna M, Aubert C (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl Microbiol Biotechnol 55:95–100

    Article  CAS  Google Scholar 

  47. Wang P, Mori T, Toda K, Ohtake H (1990) Membrane associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172(3):1670–1672

    Article  CAS  Google Scholar 

  48. Wang H, Shen YT (1993) Characterization of enzymatic reduction of hexavalent chromium by eshcherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    Article  Google Scholar 

  49. Chaturvedi MK (2011) Studies on chromate removal by chromium-resistant bacillus sp. isolated from tannery effluent. J Environ Protect 76–82

    Google Scholar 

  50. Batool R, Yrjala K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22(4):547–554

    Article  CAS  Google Scholar 

  51. Kipkurui NL, Salim AM, Nyambati V et al (2016) Isolation and molecular characterization of chrome resistant bacteria from chrome contaminated tannery waste from disposal sites in kenya. IOSR J Appl Chem 9:1–5

    CAS  Google Scholar 

  52. Clausen CA (2000) Isolating metal tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manag Res 264–268

    Google Scholar 

  53. Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (2001) U.S. Environmental Protection Agency

    Google Scholar 

  54. Bauer AW, Kirby WMM, Sherris JC, TurckM (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clinical Pathol 45:493–591

    Google Scholar 

  55. Oyetibo GO, Ilori MO, Adebusoye SA et al (2012) Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems 168(1–4):305–314

    Google Scholar 

  56. Hudzicki (2009) Kirby-bauer disk diffusion susceptibility test protocol. Am Soc Microbiol

    Google Scholar 

  57. Mupidwar NA, Ingle AB, Magar SP (2015) Prevalence of antimicrobial resistant E. coli in water reservoirs. J Pharm Res 9(8):522–524

    Google Scholar 

  58. Velásquez L, Dussán J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167(1–3):713–716

    Article  Google Scholar 

  59. Montenegro P, Dussán J (2013) Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Stand Genom Sci 9:42–56

    Article  Google Scholar 

  60. Pal A, Datta S, Paul A (2013) Hexavalent chromium reduction by immobilized cells of bacillus sphaericus AND 303. Brazilian Archives Biol Technol 56:502–515

    Google Scholar 

  61. Mangaiyarkarasi MS, Vincent S, Janarthanan S et al (2011) Bioreduction of Cr (VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups Saudi. J Biol Sci 18:157–167

    CAS  Google Scholar 

  62. Mabrouka M, Arayesa M, Sabry S (2014) Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent. Biotechnol Biotechnol Equip 28:659–667

    Article  Google Scholar 

  63. Zhang K, Li F (2011) Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl Microbiol Biotechnol 90:1163–1169

    Article  CAS  Google Scholar 

  64. Pei QH, Shahir S, Raj ASS et al (2009) Chromium (VI) resistance and removal by Acinetobacter haemolyticus World. J Microbiol Biotechnol 25:1085–1093

    Article  CAS  Google Scholar 

  65. Knapp CW, Callan AC, Aitken B (2017) Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environ Sci Pollut Res 24:2484–2494

    Article  CAS  Google Scholar 

  66. Austin CB, Wright M, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–181

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Department of Microbiology, Seth Kesarimal Porwal College, Kamptee, Nagpur, Maharashtra. We are also thankful to Department of Metallurgy, VNIT, Nagpur and IBM, Mineral Testing Lab, Hingana, Nagpur for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta V. Deote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deote, S.V., Ingle, A.B., Magar, S., Jain, R. (2021). Reduction of Hexavalent Chromium Using Microbial Remediation: A Case Study of Pauni and Taka Chromite Mines, Central India. In: Randive, K., Pingle, S., Agnihotri, A. (eds) Innovations in Sustainable Mining. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-030-73796-2_11

Download citation

Publish with us

Policies and ethics