Skip to main content

Induced Mutagenesis in Date Palm (Phoenix dactylifera L.) Breeding

  • Chapter
  • First Online:
The Date Palm Genome, Vol. 2

Abstract

Date palm (Phoenix dactylifera L.) is an economically important crop in the oases agroecological zones. In vitro mutagenesis has been an effective strategy for genetic improvements in several traits of crop plants. However, studies related to the genetic improvement of this fruit tree are very limited. Several conventional approaches including physical and chemical mutagens, insertional and somaclonal mutations have been practiced creating the desired traits. However, contemporary site-directed mutation approaches, like TALENS, ZNFs and CRISPR-Cas, have not yet been put into practice for the date palm. The prospects and applications of currently accessible mutagenesis methods for date palm genetic improvement are discussed in this chapter. New breeding tools (NBTs) for targeted mutagenesis through CRISPR-Cas-based genome editing (GE) and its base editing (BE) versions can be very effective to engineer date palm genomes. However, with a large and complex genome, heterozygosity and outcrossing, somaclonal variation during in vitro regeneration, the presence of single-nucleotide polymorphism (SNP) and ultimate genetic instability caused by these SNPs pose challenges. Such challenges could be addressed effectively by the execution of site-specific CRISPR-Cas versions, like BEs, coupled with high-throughput screening techniques. Finally, the hierarchy of targeted mutagenesis over random mutagenesis is addressed as a potential approach for futuristic studies of date palm genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi S, Safaie N, Shams-Bakhsh M, Shahbazi S (2016) Biocontrol activities of gamma induced mutants of Trichoderma harzianum against some soilborne fungal pathogens and their dna fingerprinting. Iran J Biotech 14(4):260–269

    Article  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphy 135(2):187–204

    Article  Google Scholar 

  • Ahmed O, Chokri B, Noureddine D et al (2009) Regeneration and molecular analysis of date palm (Phoenix dactylifera L.) plantlets using RAPD markers. Afr J Biotech 8(5):813–820

    Google Scholar 

  • Al-Ayedh HY, Rasool KG (2010) Determination of the optimum sterilizing radiation dose for control of the red date palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae). Crop Prot 29(12):1377–1380

    Google Scholar 

  • Al-Dous EK, George B, Al-Mahmoud ME et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotech 29(6):521–527

    Article  CAS  Google Scholar 

  • Al-Harrasi I, Jana GA, Patankar HV et al (2020) A novel tonoplast Na +/H + antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis. Plant Cell Rep 39(8):1079–1093

    Article  CAS  PubMed  Google Scholar 

  • Al Kaabi HH, Zaid A, Shephard H, Ainsworth C (2007) AFLP variation in tissue culture-derived date palm (Phoenix dactylifera L.) plants. Acta Hort 736:135–160

    Article  CAS  Google Scholar 

  • Al-Khalifah NS, Askari E (2007) Early detection of genetic variation in date palms propagated from tissue culture and offshoots by DNA fingerprinting. Acta Hort 736:105–112. https://doi.org/10.17660/ActaHortic.2007.736.8

    Article  CAS  Google Scholar 

  • Al-Khateeb SA, Al-Khateeb AA, Sattar MN, El-Beltagi HS (2019a) Genotypic variation for drought tolerance in three date palm (Phoenix dactylifera L.) cultivars. Fres Environ Bull 28(6):4671–4683

    Google Scholar 

  • Al-Khateeb SA, Al-Khateeb AA, Sattar MN et al (2019b) Assessment of somaclonal variation in salt-adapted and non-adapted regenerated date palm (Phoenix dactylifera L.). Fres Environ Bull 28(5):3686–3695

    Google Scholar 

  • Al-Khateeb SA, Al-Khateeb AA, Sattar MN, Mohmand AS (2020) Induced in vitro adaptation for salt tolerance in date palm (Phoenix dactylifera L.) cultivar khalas. Biol Res 53(1):37

    Google Scholar 

  • Al-Khayri J, Ibraheem Y (2014) In vitro selection of abiotic stress tolerant date palm (Phoenix dactylifera L.): a review. Emir J Food Agri 26(11):921–933

    Google Scholar 

  • Al-Khayri JM, Naik PM, Jain SM, Johnson DV (2018) Advances in date palm (Phoenix dactylifera L.) breeding. In: Advances in plant breeding strategies: fruits. Springer Nature, Cham, pp 727–771

    Google Scholar 

  • Al-Mahmoud M, Al-Dous E, Al-Azwani E (2011) DNA-based assays to distinguish date palm (Arecaceae) gender. Amer J Bot 99:e7–e10

    Article  Google Scholar 

  • Al-Mssallem IS, Hu S, Zhang X et al (2013) Genome sequence of the date palm Phoenix dactylifera L. Nat Comm 6(4):2274

    Article  CAS  Google Scholar 

  • Alhaider IA, Mohamed ME, Ahmed KKM, Kumar AHS (2017) Date palm (Phoenix dactylifera) fruits as a potential cardioprotective agent: the role of circulating progenitor cells. Front Pharmacol 8:592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali Z, Abul-Faraj A, Piatek M, Mahfouz MM (2015) Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav 10(10):e1044191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12(5):363–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Phys Plant 164(4):378–384

    Article  CAS  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif A, Ansari MY, Hashem A et al (2019) Proteome profiling of the mutagen-induced morphological and yield macro-mutant lines of Nigella sativa L. Plants 8(9):321

    Article  CAS  PubMed Central  Google Scholar 

  • Atay AN, Atay E, Lauri P-E et al (2018) Phenotyping gamma-ray-induced mutant population of ‘Amasya’ apple for architectural traits, precocity, floral phenology and fruit characteristics. Sci Hort 233:195–203

    Article  Google Scholar 

  • Au-Chen Y, Au-Wang X, Au-Lu S et al (2017) An array-based comparative genomic hybridization platform for efficient detection of copy number variations in fast neutron-induced Medicago truncatula mutants. JoVE(129):e56470

    Google Scholar 

  • Austin RS, Vidaurre D, Stamatiou G et al (2011) Next-generation mapping of Arabidopsis genes. Plant J 67(4):715–725

    Article  CAS  PubMed  Google Scholar 

  • Azizi P, Hanafi MM, Sahebi M et al (2020) Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. Funct Plant Bio 47(6):508–523

    Article  CAS  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermak TA et al (2014) DNA replicons for plant genome engineering. TPCO 26(1):151–163

    CAS  Google Scholar 

  • Bastaki NK, Cullis CA (2014) Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate. JoVE(94):52189

    Google Scholar 

  • Begemann MB, Gray BN, January E et al (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7(1):11606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bekheet SA (2015) Effect of cryopreservation on salt and drought tolerance of date palm cultured in vitro. Sci Agric 9(3):142–149

    CAS  Google Scholar 

  • Beyaz R, Yildiz M (2017) The use of gamma irradiation in plant mutation breeding. In: Juric S (ed) Plant engineering. IntechOpen, pp 33–46

    Google Scholar 

  • Bikard D, Jiang W, Samai P et al (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucl Acids Res 41(15):7429–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishnoi SK, Chauhan R, Yadav NK, Bishnoi P (2017) Abiotic stress effects on plants under climate change. Int J Bio-Res Stress Manag 8(6):863–870

    Article  Google Scholar 

  • Bolon Y-T, Stec AO, Michno J-M et al (2014) Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genet 198(3):967–981

    Article  CAS  Google Scholar 

  • Brocken DJ, Tark-Dame M, Dame RT (2017) dCas9: a versatile tool for epigenome editing. Curr Issues Mol Biol 26:15–32

    PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 System. Plant Phys 166(3):1292–1297

    Article  CAS  Google Scholar 

  • Castel B, Tomlinson L, Locci F et al (2019) Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS One 14(1):e0204778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak T, Baltes N, Cegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16(1):232–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chadipiralla K, Gayathri P, Rajani V (2020) Plant tissue culture and crop improvement. In: Roychowdhury R, Choudhury S, Hasanuzzaman M, Srivastava S (eds) Sustainable agriculture in the era of climate change. Springer, Cham, pp 391–412

    Chapter  Google Scholar 

  • Chang S, Lee U, Hong MJ et al (2020) High-throughput phenotyping (HTP) data reveal dosage effect at growth stages in Arabidopsis thaliana irradiated by gamma rays. Plants 9(5):557

    Article  CAS  PubMed Central  Google Scholar 

  • Chaudhary J, Alisha A, Bhatt V et al (2019) Mutation breeding in tomato: advances, applicability and challenges. Plants 8(5):128

    Article  CAS  PubMed Central  Google Scholar 

  • Cheng Z, Lin J, Lin T et al (2014) Genome-wide analysis of radiation-induced mutations in rice (Oryza sativa L. ssp. indica). Mol Biosyst 10(4):795–805

    Google Scholar 

  • Chia J-M, Song C, Bradbury PJ, Costich D et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y (2020) Phoenix dactylifera L. date palm. In: Litz R, Pliego-Alfaro F, Hormaza JI (eds) Biotechnology of fruit and nut crops. CABI, Oxford, pp 107–117

    Chapter  Google Scholar 

  • Corniquel B, Mercier L (1994) Date palm (Phoenix dactylifera L.) cultivar identification by RFLP and RAPD. Plant Sci 101(2):163–172

    Google Scholar 

  • Corniquel B, Mercier L (1997) Identification of date palm (Phoenix dactylifera L.) cultivars by RFLP: partial characterization of a cDNA probe that contains a sequence encoding a zinc finger motif. Int J Plant Sci 158(2):152–156

    Google Scholar 

  • Cosart T, Beja-Pereira A, Chen S et al (2011) Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Gen 12(1):347

    Article  CAS  Google Scholar 

  • Cox DBT, Gootenberg JS, Abudayyeh OO et al (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromwell CR, Sung K, Park J et al (2018) Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Comm 9(1):1448

    Article  CAS  Google Scholar 

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgen Res 10(4):363–371

    Google Scholar 

  • Datta S, Jankowicz-Cieslak J, Nielen S et al (2018) Induction and recovery of copy number variation in banana through gamma irradiation and low-coverage whole-genome sequencing. Plant Biotech J 16(9):1644–1653

    Article  CAS  Google Scholar 

  • Dembilio Ó, Jaques JA (2015) Biology and management of red palm weevil. In: Wakil W, Romeno Faleiro J, Miller TA (eds) Sustainable pest management in date palm: current status and emerging challenges. Springer, Cham, pp 13–36

    Chapter  Google Scholar 

  • Devanand PS, Chao CT (2003) Genetic variation within ‘Medjool’ and ‘Deglet Noor’ date (Phoenix dactylifera L.) cultivars in California detected by fluorescent-AFLP markers. J Hort Sci Biotech 78(3):405–409

    Google Scholar 

  • Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotech 32(12):1262–1267

    Article  CAS  Google Scholar 

  • Dolatabadian A, Patel DA, Edwards D, Batley J (2017) Copy number variation and disease resistance in plants. Theor Appl Genet 130(12):2479–2490

    Article  CAS  PubMed  Google Scholar 

  • El Hadrami I, El Hadrami A (2009) Breeding date palm. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 191–216

    Chapter  Google Scholar 

  • El-Mergawy R, Al-Ajlan A (2011) Red palm weevil, Rhynchophorus ferrugineus (Olivier): economic importance, biology, biogeography and integrated pest management. J Agri Sci Tech 1:1–23

    Google Scholar 

  • El-Sabah B, Fetoh BE-S (2011) Latent effects of gamma radiation on certain biological aspects of the red palm weevil (Rhynchophorus ferrugineus Olivier) as a new control technology. J Agri Tech 7:1169–1175

    Google Scholar 

  • El Naggar SEM, Mohamed HF, Mahmoud EA (2010) Studies on the morphology and histology of the ovary of red palm weevil female irradiated with gamma rays. J Asia-Pac Entomol 13(1):9–16

    Article  Google Scholar 

  • Fang Y, Wu H, Zhang T et al (2012) A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS ONE 7(5):e37164

    Google Scholar 

  • Fatima B, Usman M, Khan MS et al (2015) Identification of citrus polyploids using chromosome counts, morphological and SSR markers. Pak J Agri Sci 52:107–114

    Google Scholar 

  • Fenning TM (2019) The use of tissue culture and in-vitro approaches for the study of tree diseases. Plant Cell Tiss Org Cult 136:415–430

    Article  CAS  Google Scholar 

  • Filippo JS, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Ann Rev Biochem 77(1):229–257

    Article  CAS  Google Scholar 

  • Flowers JM, Hazzouri KM, Gros-Balthazard M et al (2019) Cross-species hybridization and the origin of north african date palms. Proc Nat Acad Sci USA 116(5):1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster AJ, Martin-Urdiroz M, Yan X et al (2018) CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus. Sci Rep 8(1):14355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francia E, Pecchioni N, Policriti A, Scalabrin S (2015) CNV and structural variation in plants: prospects of NGS approaches. In: Sablok G, Kumar S, Ueno S et al (eds) Advances in the understanding of biological sciences using next generation sequencing (NGS) approaches. Springer, Cham, pp 211–232

    Chapter  Google Scholar 

  • Fu Y, Sander JD, Reyon D et al (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotech 32(3):279–284

    Article  CAS  Google Scholar 

  • Gaines TA, Zhang W, Wang D et al (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Nat Acad Sci USA 107(3):1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Gallego-Bartolomé J, Gardiner J, Liu W et al (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Nat Acad Sci USA 115(9):E2125–E2134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89(6):1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Gen 9(2):103–110

    Article  CAS  Google Scholar 

  • Gori JL, Hsu PD, Maeder ML et al (2015) Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 26(7):443–451

    Article  CAS  PubMed  Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T et al (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Not 2(1):258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Granier F, Lemaire A, Wang Y et al (2015) Chemical and radiation mutagenesis: induction and detection by whole genome sequencing. In: Vogel JP (ed) Genetics and genomics of Brachypodium. Springer, Cham, pp 155–170

    Chapter  Google Scholar 

  • Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotech 32(6):577–582

    Article  CAS  Google Scholar 

  • Guo Y, Abernathy B, Zeng Y, Ozias-Akins P (2015) TILLING by sequencing to identify induced mutations in stress resistance genes of peanut (Arachis hypogaea). BMC Gen 16(1):157

    Article  CAS  Google Scholar 

  • Gurevich V, Lavi U, Cohen Y (2005) Genetic variation in date palms propagated from offshoots and tissue culture. J Amer Soc Hort Sci 130(1):46

    Article  CAS  Google Scholar 

  • Hartwig B, James GV, Konrad K et al (2012) Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks. Plant Phys 160(2):591–600

    Article  CAS  Google Scholar 

  • Hase Y, Satoh K, Kitamura S, Oono Y (2018) Physiological status of plant tissue affects the frequency and types of mutations induced by carbon-ion irradiation in Arabidopsis. Sci Rep 8:1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazzouri KM, Flowers JM, Nelson D et al (2020) Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era. Front Plant Sci 11(293)

    Google Scholar 

  • Hazzouri KM, Flowers JM, Visser HJ et al (2015) Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Comm 6:8824

    Article  CAS  Google Scholar 

  • Hazzouri KM, Gros-Balthazard M, Flowers JM et al (2019) Genome-wide association mapping of date palm fruit traits. Nat Comm 10(1):4680

    Article  CAS  Google Scholar 

  • He Z, Zhang C, Liu W et al (2017) DRDB: An online date palm genomic resource database. Front Plant Sci 8(1889)

    Google Scholar 

  • Hela S, Zehdi S, Boukhary A et al (2003) Tunisian date-palm (Phoenix dactylifera L.) genotypes identification mediated by plastid PCR/RFLP based DNA. J Genet Breed 57:259–264

    Google Scholar 

  • Henry IM, Nagalakshmi U, Lieberman MC et al (2014) Efficient genome-wide detection and cataloging of ems-induced mutations using exome capture and next-generation sequencing. Plant Cell 26(4):1382–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry IM, Zinkgraf MS, Groover AT, Comai L (2015) A system for dosage-based functional genomics in Poplar. Plant Cell 27(9):2370–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilioti Z, Ganopoulos I, Ajith S et al (2016) A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Rep 35(11):2241–2255

    Article  CAS  PubMed  Google Scholar 

  • Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527

    Article  CAS  PubMed  Google Scholar 

  • Hoseinzadeh P, Ruge-Wehling B, Schweizer P et al (2020) High resolution mapping of a Hordeum bulbosum-derived powdery mildew resistance locus in barley using distinct homologous introgression lines. Front Plant Sci 11(225)

    Google Scholar 

  • Hua K, Tao X, Zhu J-K (2019) Expanding the base editing scope in rice by using Cas9 variants. Plant Biotech J 17(2):499–504

    Article  Google Scholar 

  • Hussain M, Iqbal MA, Till BJ (2018) Identification of induced mutations in hexaploid wheat genome using exome capture assay. PLoS One 13(8):e0201918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyun Y, Kim J, Cho SW et al (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241(1):271–284

    Article  CAS  PubMed  Google Scholar 

  • Iqbal Z, Sattar MN, Shafiq M (2016) CRISPR/CAS9: a tool to circumscribe cotton leaf curl disease. Front Plant Sci 7:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishizu T, Higo S, Masumura Y et al (2017) Targeted genome replacement via homology-directed repair in non-dividing cardiomyocytes. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tiss Org Cult 82(1):113–123

    Article  CAS  Google Scholar 

  • Jain SM (2012) In vitro mutagenesis for improving date palm (Phoenix dactylifera L.). Emir J Food Agri 24(5):400–407

    Google Scholar 

  • Jain SM, Al-Khayri J, Johnson DV (eds) (2011) Date palm biotechnology. Springer, New York

    Google Scholar 

  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for crop breeding and functional genomics. In: Jankowicz-Cieslak J, Mba C, Till BJ (eds) Biotechnologies for plant mutation breeding. Springer, Cham, pp 3–18

    Chapter  Google Scholar 

  • Jin S, Zong Y, Gao Q et al (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Sci 364(6437):292–295

    Article  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci 337(6096):816–821

    Article  CAS  Google Scholar 

  • Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63(11):4045–4060

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Tai TH (2019) Identifying a candidate mutation underlying a reduced cuticle wax mutant of rice using targeted exon capture and sequencing. Plant Breed Biotech 7(1):1–11

    Article  Google Scholar 

  • Kim S-Y, Kim C-K, Kang MU et al (2018) A gene functional study of rice using Ac/Ds insertional mutant population. Plant Breed Biotech 6(4):313–320

    Article  CAS  Google Scholar 

  • Kocak DD, Josephs EA, Bhandarkar V et al (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotech 37(6):657–666

    Article  CAS  Google Scholar 

  • Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Zhao KT, Packer MS et al (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 3(8):eaao4774

    Google Scholar 

  • Kostov K, Batchvarova R, Slavov S (2007) Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramosa L. Bulg J Agri Sci 13(5):505–513

    Google Scholar 

  • Kozgar M, Khan S, Wani M (2012) Variability and correlations studies for total iron and manganese contents of chickpea (Cicer arietinum L.) high yielding mutants. Amer J Food Tech 7(7):437–444

    Google Scholar 

  • Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6(1):54

    Google Scholar 

  • Kumar N, Modi AR, Singh AS et al (2010) Assessment of genetic fidelity of micropropagated date palm (Phoenix dactylifera L.) plants by RAPD and ISSR markers assay. Phys Mol Bio Plants 16(2):207–213

    Google Scholar 

  • Kumari V, Singh A, Chaudhary HK et al (2019) Identification of Phytophthora blight resistant mutants through induced mutagenesis in sesame (Sesamum indicum L.). Indian Phytopath 72(1):71–77

    Google Scholar 

  • Kumawat S, Rana N, Bansal R et al (2019) Expanding avenue of fast neutron mediated mutagenesis for crop improvement. Plants 8(6):164

    Article  CAS  PubMed Central  Google Scholar 

  • Lee K, Zhang Y, Kleinstiver BP et al (2019) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotech J 17(2):362–372

    Article  CAS  Google Scholar 

  • Li C, Zong Y, Wang Y et al (2018) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotech 31(8):688–691

    Article  CAS  Google Scholar 

  • Li M, Li X, Zhou Z et al (2016a) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    PubMed  PubMed Central  Google Scholar 

  • Li S, Zheng Y-C, Cui H-R et al (2016b) Frequency and type of inheritable mutations induced by γ rays in rice as revealed by whole genome sequencing. J Zhej Uni Sci B 17(12):905–915

    Article  CAS  Google Scholar 

  • Li J, Sun Y, Du JY et al (2017a) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10(3):526–529

    Article  CAS  PubMed  Google Scholar 

  • Li S, Cong Y, Liu Y et al (2017b) Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci 8(246)

    Google Scholar 

  • Li X, Zhang Y (2002) Reverse genetics by fast neutron mutagenesis in higher plants. Funct Integ Gen 2(6):254–258

    Article  CAS  Google Scholar 

  • Li Z, Liu Z-B, Xing A et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Phys 169(2):960–970

    Article  CAS  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Gen 41(2):63–68

    Article  CAS  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand dna break repair by the nonhomologous dna end-joining pathway. Ann Rev Biochem 79(1):181–211

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Zong Y, Xue C et al (2020) Prime genome editing in rice and wheat. Nat Biotech 38(5):582–585

    Article  CAS  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Phys 169(2):971–985

    Article  CAS  Google Scholar 

  • Lu Y, Zhu J-K (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10(3):523–525

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Viola R, Jung MH et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew LS, Seidel MA, George B et al (2015) A genome-wide survey of date palm cultivars supports two major subpopulations in Phoenix dactylifera. G3 5(7):1429–1438

    Google Scholar 

  • Mathew LS, Spannagl M, Al-Malki A et al (2014) A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Gen 15:285

    Article  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotech 18(4):455–457

    Article  CAS  Google Scholar 

  • Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirani AA, Teo CH, Markhand GS et al (2020) Detection of somaclonal variations in tissue cultured date palm (Phoenix dactylifera L.) using transposable element-based markers. PCTOC 141(1):119–130

    Google Scholar 

  • Mokhtar MM, Adawy SS, El-Assal SE-DS, Hussein EHA (2016) Genic and intergenic SSR database generation, SNPs determination and pathway annotations, in date palm (Phoenix dactylifera L.). PLoS ONE 11(7):e0159268

    Google Scholar 

  • Mout R, Ray M, Yesilbag Tonga G et al (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11(3):2452–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murovec J, Guček K, Bohanec B et al (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9(1594)

    Google Scholar 

  • Naim F, Dugdale B, Kleidon J et al (2018) Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgen Res 27(5):451–460

    Article  CAS  Google Scholar 

  • Nishad R, Ahmed TA (2020) Survey and identification of date palm pathogens and indigenous biocontrol agents. Plant Dis 104(9):2498–2508

    Article  CAS  PubMed  Google Scholar 

  • Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Sci 353(6305)

    Google Scholar 

  • Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6(1):24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Choi S, Park S et al (2019) DNA-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in lettuce. In: Qi Y (ed) Plant genome editing with CRISPR systems: methods and protocols. Humana, New York, pp 337–354

    Chapter  Google Scholar 

  • Patankar HV, Al-Harrasi I, Al Kharusi L et al (2019) Overexpression of a metallothionein 2a gene from date palm confers abiotic stress tolerance to yeast and Arabidopsis thaliana. Int J Mol Sci 20(12):2871

    Article  CAS  PubMed Central  Google Scholar 

  • Piron F, Nicolaï M, Minoïa S et al (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 5(6):e0201918

    Article  CAS  Google Scholar 

  • Rajendraprasad M, Gowda M, Naidu G (2000) Groundnut mutants resistant to tobacco cutworm (Spodoptera litura F.). Curr Sci 79(2):158–160

    Google Scholar 

  • Ram C, Berwal M, Saroj S (2019) Genomic and biotechnological interventions for enchanced utilization of date palm. Ind J Arid Agri 1(1):1–7

    CAS  Google Scholar 

  • Ramakrishna S, Kwaku Dad A-B, Beloor J et al (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24(6):1020–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramkumar MK, Senthil Kumar S, Gaikwad K et al (2019) A novel stay-green mutant of rice with delayed leaf senescence and better harvest index confers drought tolerance. Plants 8(10):375

    Article  CAS  PubMed Central  Google Scholar 

  • Ran FA, Hsu Patrick D, Lin CY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana M, Usman M, Fatima B et al (2020) Prospects of mutation breeding in grapefruit (Citrus paradisi Macf.). J Hort Scie Tech 3(2):31–35

    Google Scholar 

  • Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenom 8(6):597–608

    Article  CAS  Google Scholar 

  • Rezk AA, Al-Khayri JM, Al-Bahrany AM et al (2019) X-ray irradiation changes germination and biochemical analysis of two genotypes of okra (Hibiscus esculentus L.). J Rad Res Appl Sci 12(1):393–402

    Google Scholar 

  • Rogers C, Wen J, Chen R, Oldroyd G (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Phys 151(3):1077–1086

    Article  CAS  Google Scholar 

  • Rose JC, Popp NA, Richardson CD et al (2020) Suppression of unwanted CRISPR-Cas9 editing by co-administration of catalytically inactivating truncated guide RNAs. Nat Comm 11(1):2697

    Article  CAS  Google Scholar 

  • Ryan DE, Taussig D, Steinfeld I et al (2017) Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucl Acids Res 46(2):792–803

    Article  CAS  PubMed Central  Google Scholar 

  • Sabir JSM, Arasappan D, Bahieldin A et al (2014) Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars. PLoS One 9(4):e94158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saker MM, Adawy SS, Mohamed AA, El-Itriby HA (2006) Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Bio Plant 50(2):198–204

    Article  CAS  Google Scholar 

  • Saker MM, Bekheet SA, Taha HS et al (2000) Detection of somaclonal variations in tissue culture-derived date palm plants using isoenzyme analysis and RAPD fingerprints. Bio Plant 43(3):347–351

    Article  CAS  Google Scholar 

  • Saleh AA, Sharafaddin AH, El-Komy MH et al (2017) Mitochondrial molecular markers for resistance to Bayoud disease in date palm. Date palm biotechnology protocols, vol 2. Humana Press, New York, pp 273–282

    Google Scholar 

  • Sammons RD, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70(9):1367–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhya D, Jogam P, Allini VR et al (2020) The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genet Eng Biotech 18(1):25

    Article  Google Scholar 

  • Saravanaraman M, Balaji K, Selvanarayanan V (2015) Inducing resistance in Sesamum accessions against shoot webber and capsule borer, Antigastra catalaunalis Duponchel through mutation breeding. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer India, pp 283–292

    Google Scholar 

  • Sattar MN, Iqbal Z, Dangol SD, Bakhsh A (2019) CRISPR/Cas9: A new genome editing tool to accelerate cotton (Gossypium spp.) breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: industrial and food crops. Springer Nature, Cham, pp 61–84

    Google Scholar 

  • Sattar MN, Iqbal Z, Sarwar S et al (2019b) Date palm cultivation in the post-genomic era. In: Boldue B (ed) Date palm: composition, cultivation and uses. Nova Science Publishers USA, pp 161–184

    Google Scholar 

  • Sattar MN, Iqbal Z, Tahir MN et al (2017) CRISPR/Cas9: a practical approach in date palm genome editing. Front Plant Sci 8:1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Gen 13(4):296–307

    Article  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6(8):550–551

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16(5):282–288

    Article  CAS  PubMed  Google Scholar 

  • Sedra M (2011) Molecular markers for genetic diversity and bayoud disease resistance in date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 533–550

    Chapter  Google Scholar 

  • Sedra M, Lazrek BH (2011) Fusarium oxysporum f. sp. albedinis toxin characterization and use for selection of resistant date palm to bayoud disease. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 253–270

    Chapter  Google Scholar 

  • Selvanarayanan V, Saravanaraman M, Muthukumaran N, Chacko J (2020) Harnessing host plant resistance for major crop pests: de-coding in-built systems. In: Chakravarthy AK (ed) Innovative pest management approaches for the 21st century. Springer, Heidelberg, pp 119–135

    Chapter  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotech 31(8):686–688

    Article  CAS  Google Scholar 

  • Sharada MS, Kumari A, Pandey AK et al (2017) Generation of genetically stable transformants by Agrobacterium using tomato floral buds. PCTOC 129(2):299–312

    Article  CAS  Google Scholar 

  • Shirasawa K, Hirakawa H, Nunome T et al (2016) Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotech J 14(1):51–60

    Article  CAS  Google Scholar 

  • Sieber A-N, Longin CFH, Leiser WL, Würschum T (2016) Copy number variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat. Theor Appl Genet 129(6):1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Solangi N, Abul-Soad AA, Markhand GS et al (2020) Comparison among different auxins and cytokinins to induce date palm (Phoenix dactylifera L.) somatic embryogenesis from floral buds. Pak J Bot 52(4):1243–1249

    Google Scholar 

  • Springer NM, Ying K, Fu Y et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):e1000734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotech 32:47–53

    Article  CAS  PubMed  Google Scholar 

  • Sugano SS, Nishihama R, Shirakawa M et al (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 13(10):e0205117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun W, Ji W, Hall JM et al (2015a) Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Edn Engl 54(41):12029–12033

    Article  CAS  Google Scholar 

  • Sun X, Hu Z, Chen R et al (2015b) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5(1):10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Suprasanna P, Mirajkar S, Bhagwat S (2015) Induced mutations and crop improvement. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol 2. Springer, Cham, pp 593–617

    Chapter  Google Scholar 

  • Sutton T, Baumann U, Hayes J et al (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Sci 318(5855):1446–1449

    Article  CAS  Google Scholar 

  • Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Phys 169(2):931–945

    Article  CAS  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S et al (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20(12):1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taheri S, Abdullah TL, Jain SM et al (2017) TILLING, high-resolution melting (HRM), and next-generation sequencing (NGS) techniques in plant mutation breeding. Mol Breed 37(3):40

    Article  CAS  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res (Tokyo) 51(3):223–233

    Article  CAS  Google Scholar 

  • Tengberg M (2012) Beginnings and early history of date palm garden cultivation in the middle east. J Arid Environ 86:139–147

    Article  Google Scholar 

  • Till BJ, Reynolds SH, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai H, Howell T, Nitcher R et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Phys 156(3):1257–1268

    Article  CAS  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter CA et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotech 32(6):569–576

    Article  CAS  Google Scholar 

  • Veillet F, Perrot L, Chauvin L et al (2019) Ttransgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR-Cas9 cytidine base editor. Int J Mol Sci 20(2):402

    Article  PubMed Central  CAS  Google Scholar 

  • Wada N, Ueta R, Osakabe Y, Osakabe K (2020) Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 20(1):234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532(7599):293

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech 32(9):947–951

    Article  CAS  Google Scholar 

  • Wang Z-P, Xing H-L, Dong L et al (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16(1):144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM et al (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotech J 10(6):733–742

    Article  CAS  Google Scholar 

  • Wolter F, Klemm J, Puchta H (2018) Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. Plant J 94(4):735–746

    Article  CAS  PubMed  Google Scholar 

  • Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16(1):218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao Y, Xia W, Yang Y et al (2013) Characterization and evolution of conserved microRNA through duplication events in date palm (Phoenix dactylifera). PLoS One 8(8):e71435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Nat Acad Sci USA 112(11):3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin C, Liu W, Lin Q et al (2015) Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development. Genom 105(4):242–251

    Google Scholar 

  • Xu R, Li H, Qin R et al (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu R, Li J, Liu X et al (2020) Development of plant prime-editing systems for precise genome editing. Plant Comm 1(3):100043

    Article  Google Scholar 

  • Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6(348)

    Google Scholar 

  • Yamamoto A, Ishida T, Yoshimura M et al (2019) Developing heritable mutations in Arabidopsis thaliana using a modified CRISPR/Cas9 toolkit comprising PAM-altered Cas9 variants and gRNAs. Plant Cell Phys 60(10):2255–2262

    Article  CAS  Google Scholar 

  • Yan F, Kuang Y, Ren B et al (2018) Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11(4):631–634

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Zhang X, Liu G et al (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS ONE 5(9):e12762

    Google Scholar 

  • Ye L-M, Malingreau J-P, Tang H-J, Van Ranst E (2016) The breakfast imperative: the changing context of global food security. J Integ Agri 15(6):1179–1185

    Article  Google Scholar 

  • Yin H, Song C-Q, Suresh S et al (2018) Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol 14(3):311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K, Han T, Liu G et al (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Zhang X, Fang Y et al (2012) High-throughput sequencing-based gene profiling on multi-staged fruit development of date palm (Phoenix dactylifera L.). Plant Mol Biol 78(6):617–626

    Google Scholar 

  • Yu P, Wang C, Xu Q et al (2011) Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Gen 12(1):372

    Article  CAS  Google Scholar 

  • Yu Y-L, Liang H-Z, Wang S-F et al (2010) Research progress and commercialization on transgenic soybean in china. Soybean Sci 29(1):143–150

    Google Scholar 

  • Zale JM, Agarwal S, Loar S (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28(6):903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Lutova LA, Han Z, Wang Z (2000) Study on the selection of tomato mutant line resistant to Phytophthora infestans (Mont.) De Bary by cellular breeding. Acta Hort 27(5):377–379

    Google Scholar 

  • Zhang F, LeBlanc C, Irish VF, Jacob Y (2017) Rapid and efficient CRISPR/Cas9 gene editing in citrus using the YAO promoter. Plant Cell Rep 36(12):1883–1887

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Liu J, Chai Z et al (2019) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5(5):480–485

    Article  CAS  PubMed  Google Scholar 

  • Żmieńko A, Samelak A, Kozłowski P, Figlerowicz M (2014) Copy number polymorphism in plant genomes. Theor Appl Genet 127(1):1–18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel M. Al-Khayri .

Editor information

Editors and Affiliations

Appendix I: List of Some Research Institutes Relevant to Date Palm

Appendix I: List of Some Research Institutes Relevant to Date Palm

Institute name

Specialization research activities

Contact information and Web site

Date Palm Research Center of Excellence

Biotic and abiotic stresses through conventional and modern techniques

King Faisal University, Eastern Province—Al-Ahsa City PO Box 380 Postal Code 31982. Saudi Arabia

https://www.kfu.edu.sa/en/Centers/palms/Pages/Home-new.aspx

Date palm research group

Biotic and abiotic stresses

King Saud University, College of Food and Agricultural Sciences, Riyad, Saudi Arabia

http://cfas.ksu.edu.sa/en/content/date-palm-research-group

Center for Desert Agriculture Research

Date palm genomics and molecular breeding

King Abdullah University of Science and Technology, Thuwal 23955-6900

Saudi Arabia

https://www.kaust.edu.sa/en/

Date palm Research Institute,

Micropropagation and varietal development

Shah Abdul Latif University, Khairpur Mirs, Sindh, Pakistan

www.salu.edu.pk

Date Palm Research and Development Unit

Varietal development, quantity and quality enhancement through modern biotech approaches

United Arab Emirates University,

P.O. Box 15551,

Al Ain, Abu Dhabi,

United Arab Emirates

https://www.uaeu.ac.ae/en/dvcrgs/research/centers/dpdrud/

National Center for Palm and Dates

Develop dates sector by concentration on production efficiency (cost reduction), product quality, effective marketing programs

7345 Prince Turky bin Abdulaziz Alawal—Hittin—13512-2141. Saudi Arabia

https://ncpd.org.sa/en/about

Date Palm Research Unit, University of Baghdad

To develop technologies for production, protection and post harvest technologies for date palm

University of Baghdad, Baghdad, Iraq

https://www.dateresearchinstitute.com/

Date palm Research Station, Mundra

To develop technologies for production, protection and post harvest technologies for date palm

Sardar krushi nagar—385506.

Dist.Banaskantha.

Gujarat, India

http://www.sdau.edu.in/detail/728914/date-palm-research-station-mundra

Date Palm Research Center

Quality and quantity enhancement in date palm

University of Basrah, Iraq

http://uobasrah.academia.edu/Departments/Date_Palm_Reaserch_Center/

Palm Desert Center

Conservation and development of elite cultivars using modern approaches

75080 Frank Sinatra Drive

Palm Desert, CA 92211

University of California, Riverside, USA

https://palmdesert.ucr.edu/research

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sattar, M.N., Iqbal, Z., Naqqash, M.N., Jain, S.M., Al-Khayri, J.M. (2021). Induced Mutagenesis in Date Palm (Phoenix dactylifera L.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) The Date Palm Genome, Vol. 2. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-73750-4_7

Download citation

Publish with us

Policies and ethics