Skip to main content

Vacuum Electronic Devices

  • 958 Accesses

Part of the Springer Series in Optical Sciences book series (SSOS,volume 234)

Abstract

The exploitation of the spectrum beyond 100 GHz is the solution for the full implementation of 5G and the development of 6G concepts. Low-power electronics is already available, but technology advancements are needed to overcome the increasing atmosphere and rain attenuation above 100 GHz, which presently limit the transmission distance.

New solid-state power amplifiers (SSPA) based on GaN or InP processes have been produced in the recent years, but the best output power achieved is far below the watt level needed for transmission by high modulation schemes over long range.

Vacuum electronic devices, namely, traveling-wave tubes (TWTs), offer more than one order of magnitude and more power than SSPA, over wide bandwidth, representing a promising solution for ultrahigh-capacity long links.

However, the short wavelength above 100 GHz poses substantial fabrication challenges, which require new technology approaches for high-volume production to bring TWTs into the wireless communication market. This chapter will explore the working mechanism, the potentiality, the features, the state of the art, and the possible deployment scenarios for millimeter-wave and sub-THz TWTs.

Keywords

  • Slow wave structures
  • Electron beam
  • Cathode
  • High voltage
  • Vacuum electronics
  • TWT
  • SWS
  • Millimeter waves
  • Sub-THz

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-73738-2_27
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-73738-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 27.1
Fig. 27.2
Fig. 27.3
Fig. 27.4
Fig. 27.5

References

  1. Rollin, J.-M., et al. (2015). A polystrata 820 mW G-band solid state power amplifier. In Proceedings of IEEE compound semiconductor Integrated Circuit Symposium (CSICS).

    Google Scholar 

  2. M. Ćwikliński et al., "D-band and G-band high-performance GaN power amplifier MMICs," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5080–5089, Dec. 2019.

    Google Scholar 

  3. Basu, R., et al. (2018). Design of sub-THz traveling wave tubes for high data rate long range wireless links. Semiconductor Science and Technology, 33, 124009.

    ADS  CrossRef  Google Scholar 

  4. F. André et al., "Technology, assembly, and test of a W-band traveling wave tube for new 5G high-capacity networks," IEEE Transactions on Electron Devices, vol. 67, no. 7, pp. 2919–2924, July 2020, doi: https://doi.org/10.1109/TED.2020.2993243.

  5. Barker, R. J., Booske, J. H., Luhmann, N. C., & Nusinovich, G. S. (2005). Modern Microwave and Millimeter-Wave Power Electron. Piscat-away: IEEE.

    CrossRef  Google Scholar 

  6. Paoloni, C., Gamzina, D., Letizia, R., Zheng, Y., & Luhmann, N. C., Jr. (2020). Millimeter wave traveling wave tubes for the 21st century. Journal of Infrared, Millimeter, and Terahertz Waves. https://doi.org/10.1080/09205071.2020.1848643.

  7. Armstrong, C. M., et al. (2018). A compact extremely high frequency MPM power amplifier. IEEE Transactions on Electron Devices, 65(6), 2183–2188.

    ADS  CrossRef  Google Scholar 

  8. Field, M., et al. (2018). Development of a 100-W 200-GHz high bandwidth mm-wave amplifier. IEEE Transactions on Electron Devices, 65(6), 2122–2128. https://doi.org/10.1109/TED.2018.2790411.

    ADS  CrossRef  Google Scholar 

  9. Hu, P., et al. (2018). Development of a 0.32-THz folded waveguide traveling wave tube. IEEE Transactions on Electron Devices, 65(6), 2164–2169.

    ADS  CrossRef  Google Scholar 

  10. Gamzina, D., et al. (2016). Nano-CNC machining of sub-THz vacuum Electron devices. IEEE Transactions on Electron Devices, 63(10), 4067–4073. https://doi.org/10.1109/TED.2016.2594027.

    ADS  CrossRef  Google Scholar 

  11. Paoloni, C., et al. (2013). Design and realization aspects of 1-THz Cascade backward wave amplifier based on double corrugated waveguide. IEEE Transactions on Electron Devices, 60(3), 1236–1243.

    ADS  CrossRef  Google Scholar 

  12. C. D. Joye et al., “Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA,” IEEE Transactions on Electron Devices, vol. 61, no. 6, pp. 1672–1678, Jun. 2014.

    Google Scholar 

  13. Malek Abadi, S. A., & Paoloni, C. (2016). UV-LIGA microfabrication process for sub-terahertz waveguides utilizing multiple layered SU-8 photoresist. Journal of Micromechanics and Microengineering, 26, 9, 8, 095010.

    CrossRef  Google Scholar 

  14. C. Paoloni et al. (2018) Transmission Hub and Terminals for Point to Multipoint W-Band TWEETHER System. 2018 European Conference on Networks and Communications (EuCNC), Ljubljana, Slovenia.

    Google Scholar 

  15. http://www.ultrawave2020.eu

  16. C. Paoloni et al., "Technology for D-band/G-band ultra capacity layer," 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, 2019, pp. 209–213.

    Google Scholar 

  17. https://thorproject.eu

  18. Paoloni, C, et al., R 2020, Long-range millimetre wave wireless links enabled by travelling wave tubes and resonant tunnelling diodes, IET Microwaves Antennas and Propagation, vol. 14, no. 15, pp. 2110–2114. https://doi.org/10.1049/iet-map.2020.00.

  19. D. M. Goebel, R. R. Liou, W. L. Menninger, Xiaoling Zhai and E. A. Adler, "Development of linear traveling wave tubes for telecommunications applications," in IEEE Transactions on Electron Devices, vol. 48, no. 1, pp. 74–81, Jan. 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Paoloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Paoloni, C. (2022). Vacuum Electronic Devices. In: Kürner, T., Mittleman, D.M., Nagatsuma, T. (eds) THz Communications. Springer Series in Optical Sciences, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-030-73738-2_27

Download citation