Skip to main content

Research Methods in Daylighting and Electric Lighting

  • Chapter
  • First Online:
Research Methods in Building Science and Technology

Abstract

Research in daylighting and electric lighting focuses on the physical quantity of light, physiological response to the physical stimuli, and the resulting visual perception. This chapter starts with an overview of the measurement and simulation-based research approaches used in understanding and quantifying the lighting availability and variability in the luminous environment. Field and laboratory measurements are discussed along with computational techniques. The rest of the chapter focuses on psychophysical research methods that aim to quantify the human physiological and psychological responses to the quantity and distribution of light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allan, A. C., Garcia-Hansen, V., Isoardi, G., & Smith, S. S. (2019). Subjective assessments of lighting quality: A measurement review. Leukos, 15(2–3), 115–126.

    Article  Google Scholar 

  • Amundadottir, M. L., Lockley, S. W., & Andersen, M. (2017). Unified framework to evaluate non-visual spectral effectiveness of light for human health. Lighting Research and Technology, 49, 673–696.

    Article  Google Scholar 

  • Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., & Shettle, E. P. (1986). Air force geophysical laboratory atmospheric constituent profiles. Hanscom: Air Force Geophysics Lab.

    Google Scholar 

  • Ayoub, M. (2020). A review on machine learning algorithms to predict daylighting inside buildings. Solar Energy, 202, 249–275.

    Article  Google Scholar 

  • Balakrishnan, P., & Jakubiec, A. (2016). Measuring light through trees for daylight simulations: A photographic and photometric method. Proceedings of Building Simulation and Optimization, Newcastle, UK.

    Google Scholar 

  • Bargary, G., Furlan, M., Raynham, P., Barbur, J., & Smith, A. T. (2015). Cortical hyperexcitability and sensitivity to discomfort glare. Neuropsychologia, 69, 194–200.

    Article  Google Scholar 

  • Berman, S. M., Bullimore, M. A., Jacobs, R. J., Bailey, I. L., & Gandhi, N. (1994). An objective measure of discomfort glare. Journal of the Illuminating Engineering Society, 23(2), 40–49.

    Article  Google Scholar 

  • Berman, S. M., Bullimore, M. A., Bailey, I. L., & Jacobs, R. J. (1996). The influence of spectral composition on discomfort glare for large-size sources. Journal of the Illuminating Engineering Society, 25(1), 34–41.

    Article  Google Scholar 

  • Bertenshaw, D. R. (2020). The standardisation of light and photometry – A historical review. Lighting Research and Technology, 0, 1–33.

    Google Scholar 

  • Bierman, A., Klein, T. R., & Rea, M. S. (2005). The Daysimeter: A device for measuring optical radiation as a stimulus for the human circadian system. Measurement Science and Technology, 16, 2292–2299.

    Article  Google Scholar 

  • Blackwell, R. (1959). Development and use of a quantitative method for specification of interior illumination levels on the basis of performance data. Illuminating Engineering, 54, 317–353.

    Google Scholar 

  • Boyce, P. R. (1973). Age, illuminance, visual performance and preference. Lighting Research and Technology, 5, 125–140.

    Article  Google Scholar 

  • Boyce, P. R. (2014). Human factors in lighting. London: Taylor and Francis Group.

    Book  Google Scholar 

  • Boyce, P. R., Veitch, J. A., & Newsham, G. R. (2006). Lighting quality and office work: two field simulation experiments. Lighting Research and Technology, 38(3), 191–223.

    Article  Google Scholar 

  • Brainard, G. C., Hanifin, J. R., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., & Rollag, M. D. (2001). Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. Journal of Neuroscience, 21(16), 6405–6412.

    Article  Google Scholar 

  • Cadik, M., Wimmer, M., Neumann, L., & Artusi, A. (2008). Evaluation of HDR tone mapping methods using essential perceptual attributes. Computer and Graphics, 32(3), 330–349.

    Article  Google Scholar 

  • Chamilothori, K., Wienold, J., & Andersen, M. (2019). Adequacy of immersive virtual reality for the perception of daylit spaces: Comparison of real and virtual environments. Leukos, 15(2-3), 203–226.

    Article  Google Scholar 

  • Chauvel, P., Collins, J. B., Dogniaux, R., & Longmore, J. (1982). Glare from windows: Current views of the problem. Lighting Research and Technology, 14(1), 31–46.

    Article  Google Scholar 

  • CIE. (1987). Methods of characterizing illuminance meters and luminance meters: Performance, characteristics, and specification, Vienna, Austria.

    Google Scholar 

  • CIE. (1996). Spatial distribution of daylight - CIE standard overcast sky and clear sky. ISO 15469/CIE S003, Vienna, Austria.

    Google Scholar 

  • CIE. (2006). CIE 171 - Test cases to assess the accuracy of lighting computer programs. Vienna, Austria.

    Google Scholar 

  • CIE. (2018). CIE system for metrology of optical radiation fir ipRGC-influenced responses to light. CIE S 026/E:2018, Vienna, Austria.

    Google Scholar 

  • Debevec, P. (2002). Image-based Lighting. IEEE Computer Graphics and Applications, March/April, pp. 26–34.

    Google Scholar 

  • Debevec, P. E., & Malik, J. (1997). Recovering high dynamic range radiance maps from photographs. Proceedings of ACM SIGGRAPH, 3–8 August, Los Angeles, pp. 369–378.

    Google Scholar 

  • DiLaura, D. L., Houser, K. W., Mistrick, R. G., & Steffy, G. R. (2011). The lighting handbook. New York: Illuminating Engineering Society.

    Google Scholar 

  • Eklund, N. H., & Boyce, P. R. (1996). The development of a reliable, valid, and simple office lighting survey. Journal of the Illuminating Engineering Society, 25(2), 25–40.

    Article  Google Scholar 

  • EN: European Committee for Standardization. (2018). Daylight in buildings. Brussels: EN 17037.

    Google Scholar 

  • Enezi, J. A., Revell, V., Brown, T., Wynne, J., Schlangen, L., & Lucas, R. (2011). A melanopic spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights. Journal of Biological Rhythms, 26(4), 314–323.

    Article  Google Scholar 

  • Figueiro, M. G., Brainard, G. C., Lockley, S. W., Revell, V. L., White, R. (2008). Light and human health: An overview of the impact of optical radiation on visual, circadian, neuroendocrine, and neurobehavioral responses, IES TM-18-08. New York: Illuminating Engineering Society.

    Google Scholar 

  • Flynn, J. E., Hendrick, C., Spencer, T., & Martyniuk, O. (1979). A guide to methodology procedures for measuring subjective impressions in lighting. Journal of the Illuminating Engineering Society, 8(2), 95–110.

    Article  Google Scholar 

  • Gescheider, G. (1984). Psychophysics: Method, theory, and application. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Grobe, L. O. (2019). Photon mapping in image-based visual comfort assessments with BSDF models of high resolution. Journal of Building Performance Simulation, 12(6), 745–758.

    Article  Google Scholar 

  • Hernandez-Andres, J., Romero, J., & Nieves, J. L. (2001). Color and spectral analysis of daylight in Southern Europe. Journal of Optical Society of America, 18(6), 1325–1335.

    Article  Google Scholar 

  • Hopkinson, R. G. (1972). Glare from daylighting in buildings. Applied Ergonomics, 3(4), 206–215.

    Article  Google Scholar 

  • Ibarra, D., & Reinhart, C. F. (2013). Teaching daylight simulations – Improving modeling workflows for simulation novices. Proceedings of Building Simulation, Chambery, France.

    Google Scholar 

  • IBPSA. (2020). Building Energy Software Tools (BEST) Directory, International Building Performance Simulation Association, https://www.buildingenergysoftwaretools.com/

  • IEA. (1999). Post occupancy evaluation of daylight in buildings. Galve: International Energy Agency.

    Google Scholar 

  • IEA. (2016). Monitoring protocol for lighting and daylighting retrofits. Stuttgart: International Energy Agency.

    Google Scholar 

  • IES. (2012). IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). Illuminating Engineering Society, New York: LM-83-12.

    Google Scholar 

  • IES. (2013). Recommended Practice for Daylighting Buildings, Illuminating Engineering Society, New York: IES RP-5-13.

    Google Scholar 

  • IGDB: International Glazing Database. (2020). Lawrence Berkeley National Laboratory, https://windows.lbl.gov/software/igdb

  • Inanici, M. (2006). Evaluation of high dynamic range photography as a luminance data acquisition system. Lighting Research and Technology, 38(2), 123–136.

    Article  Google Scholar 

  • Inanici, M. (2010). Evaluation of high dynamic range image-based sky models in lighting simulation. Leukos, 7(2), 69–84.

    Article  Google Scholar 

  • Inanici, M. (2019). Tri-stimulus color accuracy in image-based sky models: Simulating the impact of color distributions throughout the sky-dome on daylit interiors with different orientations, Proceedings of Building Simulation, Rome, Italy.

    Google Scholar 

  • Inanici, M., & Hashemloo, A. (2017). An investigation of the daylighting simulation techniques and sky modeling practices for occupant centric evaluations. Building and Environment, 113, 220–231.

    Article  Google Scholar 

  • Inanici, M., Brennan, M., & Clark, E. (2015). Spectral lighting simulations: Computing circadian light. Proceedings of Building Simulation, Hyderabad, India, pp. 1245–1252.

    Google Scholar 

  • Jakubiec A, van den Wymelenberg K, Inanici M, Mahic A. (2016a). Accurate measurement of daylit interior scenes using high dynamic range photography. Proceedings of CIE Lighting Quality and Energy Efficiency Conference, Melbourne, Australia.

    Google Scholar 

  • Jakubiec, A., Inanici, M., van den Wymelenberg, K., & Mahic, A. (2016b). Improving the accuracy of measurements in daylit interior scenes using high dynamic range photography. Proceedings of Passive and Low Energy Architecture Conference, Los Angeles, CA.

    Google Scholar 

  • Jones, N., & Reinhart, C. F. (2017). Experimental validation of ray tracing as a means of image-based visual discomfort prediction. Building and Environment, 113, 131–150.

    Article  Google Scholar 

  • Jung, B. Y., & Inanici, M. (2019). Measuring circadian lighting through high dynamic range photography. Lighting Research and Technology, 51(5), 742–763.

    Article  Google Scholar 

  • Kelly, K. (2017). A different type of lighting research – A qualitative methodology. Lighting Research and Technology, 49(8), 933–942.

    Article  Google Scholar 

  • Knoop, M., Diakite, A., & Rudawski, F. (2015). Methodology to create spectral sky models to enable the inclusion of colorimetric characteristics of daylight in research and design. Proceedings from CIE Conference, Manchaster, UK.

    Google Scholar 

  • Kort, Y. (2019). Tutorial: Theoretical considerations when planning research on human factors in lighting. Leukos, 15(2-3), 85–96.

    Article  Google Scholar 

  • Liu, Y., Colburn, A., & Inanici, M. (2018). Computing long-term daylighting simulations from high dynamic range imagery using deep neural networks, Proceedings of SimBuild (co-organized by ASHRAE and IBPSA-USA), Chicago IL.

    Google Scholar 

  • Liu, Y., Colburn, A., & Inanici, M. (2020). Deep neural network approach for annual luminance simulations. Journal of Building Performance Simulation. 13(5), 532–554.

    Google Scholar 

  • Lucas, R., Peirson, S., Berson, D., Brown, T., Cooper, H., Czeisler, C., Figuero, M., Gamlin, P., Lockley, S., O’Hagan, J., Price, L., Provencio, I., Skene, D., & Brainard, G. (2014). Measuring and using light in the melanopsin age. Trends in Neurosciences, 37(1), 1–9.

    Article  Google Scholar 

  • Mardaljevic, J. (1995). Validation of a lighting simulation program under real sky conditions. Lighting Research and Technology, 27(4), 181–188.

    Article  Google Scholar 

  • Mardaljevic, J. (2001). The BRE-IDMP dataset: A new benchmark for the validation of illuminance prediction techniques. Lighting Research and Technology, 33(2), 117–134.

    Article  Google Scholar 

  • Mardaljevic, J., Andersen, M., Roy, N., & Christoffersen, J. (2013). A framework for predicting the non-visual effects of daylight – Part II: The simulation model. Lighting Research and Technology, 46(4), 388–406.

    Article  Google Scholar 

  • McNeil, A., & Lee, E. S. (2013). A validation of the radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems. Journal of Building Performance Simulation, 6(1), 24–37.

    Article  Google Scholar 

  • Moroder, D. G., Lee, E. S., & Ward, G. (2017). Validation of the five-phase method for simulating complex fenestration systems with radiance against field measurements. Proceedings of Building Simulation, San Francisco, CA.

    Google Scholar 

  • Nabil, A., & Mardaljevic, J. (2005). Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Lighting Research and Technology, 37, 41–59.

    Article  Google Scholar 

  • Parsaee, M., Demers, C. M. H., Lalonde, J. H., Potvin, A., Inanici, M., & Hébert, M. (2020). Human-centric lighting performance of shading panels in architecture: A benchmarking study with lab scale physical models under real skies. Solar Energy, 204, 354–368.

    Article  Google Scholar 

  • Pechacek, C. S., Andersen, M., & Lockley, S. W. (2008). Preliminary method for prospective analysis of the circadian efficacy of (day)light with applications to healthcase architecture. Leukos, 5(1), 1–26.

    Article  Google Scholar 

  • Perez, R., Seals, J. M., & Ineichen, P. (1993). An all-weather model for sky luminance distribution. Solar Energy, 50(3), 235–245.

    Article  Google Scholar 

  • Rea, M. S., & Ouellette, M. J. (1991). Relative visual performance: A basis for application. Lighting Research and Technology, 23(3), 135–144.

    Article  Google Scholar 

  • Rea, M. S., Figueiro, M. G., Bierman, A., & Bullough, J. D. (2010). Circadian light. Journal of Circadian Rhythms, 8(2), 1–10.

    Google Scholar 

  • Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., & Myszkowski, K. (2010). High dynamic range imaging. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Reinhart, C. F. (2001). Daysim. https://github.com/MITSustainableDesignLab/Daysim

  • Reinhart, C. F. (2004). Lightswitch-2002: A model for manual and automated control of electric lighting and blinds. Solar Energy, 77(1), 15–28.

    Article  Google Scholar 

  • Reinhart, C. F. (2019). Daylighting performance predictions. In H. JLM & R. Lamberts (Eds.), Building performance and simulation for design and operation (pp. 221–269). New York: Routledge.

    Chapter  Google Scholar 

  • Reinhart, C. F., & Fitz, A. (2006). Findings from a survey on the current use of daylight simulations in building design. Energy and Buildings, 38(7), 824–835.

    Article  Google Scholar 

  • Reinhart, C. F., & Walkenhorst, O. (2001). Dynamic radiance-based daylight simulations for a full-scale test office with outer venetian blinds. Energy and Buildings, 33(7), 683–697.

    Article  Google Scholar 

  • Reinhart, C. F., Mardaljevic, J., & Rogers, Z. (2006). Dynamic daylight performance metrics for sustainable building design. Leukos, 3(1), 7–31.

    Article  Google Scholar 

  • Rockcastle, S., Chamilothori, K., & Andersen, M. (2017). An experiment in virtual reality to measure daylight-driven interest in rendered architectural scenes, Proceedings of Building Simulation, San Francisco, CA.

    Google Scholar 

  • Ruppertsberg, A. I., & Bloj, M. (2006). Rendering complex scenes for psychophysics using radiance: How accurate can you get? Journal of Optical Society of America, 23(4), 759–768.

    Article  Google Scholar 

  • Sarey-Khanie, M., Anderson, M., Hart, B. M., Stoll, J., & Einhouser, W. (2011). Integration of eye-tracking methods in visual comfort assessments. Proceedings of CISBAT: CleanTech for Sustainable Buildings - From Nano to Urban Scale, Lausanne, Switzerland.

    Google Scholar 

  • Seetzen, L., Whitehead, L. A., & Ward, G. (2003). A high dynamic range display using low and high resolution modulators. Society for Information Display International Symposium, 34(1), 1450–1453.

    Google Scholar 

  • Solemma. (2019). ALFA – Adaptive lighting for alertness. https://solemma.com/Alfa.html

  • Stromann-Andersen, J., & Sattrup, P. A. (2011). The urban canyon and building energy use: Urban density versus daylight and passive solar gains. Energy and Buildings, 43(8), 2011–2020.

    Article  Google Scholar 

  • Stumpfel, J., Jones, A., Wenger, A., & Debevec, P. (2004). Direct HDR Capture of the Sun and Sky, International Conference on Virtual Reality, Computer Graphics, Visualization and Interaction in Africa, Cape Town, South Africa.

    Google Scholar 

  • Tai, N. C., & Inanici, M. (2012). Luminance Contrast as Depth Cue: Investigations and Design Applications. Journal of Computer-Aided Design and Applications, 9(5), 691–705.

    Article  Google Scholar 

  • Thapan, K., Arendt, J., & Skene, D. J. (2001). An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. Journal of Physiology, 535(1), 261–267.

    Article  Google Scholar 

  • Tregenza, P. R., & Waters, I. M. (1983). Daylight coefficients. Lighting Research and Technology, 19(1), 65–71.

    Article  Google Scholar 

  • van den Wymelenberg, K., & Inanici, M. (2014). A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight. Leukos, 10(3), 145–164.

    Article  Google Scholar 

  • Veitch, J. A. (2001). Psychological processes influencing lighting quality. Journal of the Illuminating Engineering Society, 30(1), 124–140.

    Article  Google Scholar 

  • Veitch, J. A., & Davis, R. (2019). Lighting research today: The more things change, the more they stay the same. Leukos, 15(2–3), 77–83.

    Article  Google Scholar 

  • Veitch, J. A., & Newsham, G. R. (1996). Determinants of lighting quality II: Research and recommendations. Annual Convention of American Psychological Association, Toronto, Canada.

    Google Scholar 

  • Veitch, J. A., Charles, K., Farley, K. M. J., & Newsham, G. R. (2007). A model of satisfaction with open-plan office conditions: COPE field findings. Journal of Environmental Psychology, 27(3), 177–189.

    Article  Google Scholar 

  • Veitch, J. A., Fatios, S. A., & Houser, K. W. (2019). Judging the scientific quality of applied lighting research. Journal of the Illuminating Engineering Society, 15(2-3), 97–114.

    Google Scholar 

  • Wagdy, A., Garcia-Hansen, V., Elhenawy, M., Isoardi, G., Drogemuller, R., & Fathy, F.. (2020). Machine Learning Framework for developing glare predictive models, CIE Australia Lighting Research Conference, Brisbane, Australia.

    Google Scholar 

  • Wang, T., Ward, G., & Lee, E. S. (2018). Efficient modeling of optically-complex, non-coplanar exterior shading: Validation of matrix algebraic methods. Energy and Buildings, 174, 464–483.

    Article  Google Scholar 

  • Ward, G. (1994). The radiance lighting simulation and rendering system (pp. 459–472). Orlando, FL: Proceedings of ACM SIGGRAPH.

    Google Scholar 

  • Ward, G. (2005). Photosphere. http://www.anyhere.com/

  • Wienold, J. (2009). Dynamic daylight glare evaluation. Proceedings of Building Simulation, Glasgow, UK.

    Google Scholar 

  • Wienold, J., & Christoffersen, J. (2006). Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, 38(7), 743–757.

    Article  Google Scholar 

  • Wyszecki, G., & Stiles, W. S. (2000). Color science: Concepts and methods, quantitative data and formulae. New York: John Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehlika Inanici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inanici, M. (2021). Research Methods in Daylighting and Electric Lighting. In: Azari, R., Rashed-Ali, H. (eds) Research Methods in Building Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-73692-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73692-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73691-0

  • Online ISBN: 978-3-030-73692-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics