Skip to main content

Early Diagnosis of Parkinson’s Disease Using LSTM: A Deep Learning Approach

  • 646 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1383)

Abstract

Parkinson’s disease (PD) is one of the most rapidly growing neurodegenerative diseases in the world. Due to motor symptoms, it affects the normal life of a person. There is a severe need to identify PD in its early stage to avoid it getting worse and to control its symptoms easily. The advancements in Artificial Intelligence (AI) and the Internet of Things (IoT) open up new avenues for the analysis of various data points such as the gait of a person for early-stage detection. In this paper, we propose a methodology based on the use of Long Short-Term Memory (LSTM) architecture for PD diagnosis. We have used time series analysis to find the gait patterns and deep learning techniques to extract the features and to build a classifier model. The proposed model is predicting the PD disease with 85% testing accuracy and with an F1 score of 0.90. The validation is performed using Cohen’s Kappa statistical method and obtained a score of 0.631.

Keywords

  • Parkinson’s disease
  • Deep learning
  • LSTM
  • RNN
  • Gait analysis
  • IoT

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-73689-7_44
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-73689-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Pearce, J.M.S.: Aspects of the history of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry (1989). https://doi.org/10.1136/jnnp.52.Suppl.6

  2. Challa, K.N.R., Pagolu, V.S., Panda, G., Majhi, B.: An improved approach for prediction of Parkinson’s disease using machine learning techniques. In: International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016, Proceedings, pp. 1446–1451 (2017). https://doi.org/10.1109/SCOPES.2016.7955679

  3. Senturk, Z.K.: Early diagnosis of Parkinson’s disease using machine learning algorithms. Med. Hypotheses 138, 109603 (2020). https://doi.org/10.1016/j.mehy.2020.109603

    CrossRef  Google Scholar 

  4. Chan, D.K.Y., Hung, W.T., Wong, A., Hu, E., Beran, R.G.: Validating a screening questionnaire for parkinsonism in Australia. J. Neurol. Neurosurg. Psychiatry 69(1), 117–120 (2000). https://doi.org/10.1136/jnnp.69.1.117

    CrossRef  Google Scholar 

  5. Challa, K.N.R., Pagolu, V.S., Panda, G., Majhi, B.: An improved approach for prediction of Parkinson’s disease using machine learning techniques. In: International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016 - Proceedings, pp. 1446–1451 (2017). https://doi.org/10.1109/SCOPES.2016.7955679

  6. Kotsavasiloglou, C., Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M.: Machine learning-based classification of simple drawing movements in Parkinson’s disease. Biomed. Signal Process. Control (2017). https://doi.org/10.1016/j.bspc.2016.08.003

    CrossRef  Google Scholar 

  7. Grover, S., Bhartia, S., Yadav, A., Seeja, K.R.: Predicting severity of Parkinson’s disease using deep learning. Procedia Comput. Sci. 132(ICCIDS), 1788–1794 (2018). https://doi.org/10.1016/j.procs.2018.05.154

  8. Flagg, C., Frieder, O., MacAvaney, S., Motamedi, G.: Streaming gait assessment for Parkinson’s disease. In: CEUR Workshop Proceedings, vol. 2551, pp. 34–42 (2020)

    Google Scholar 

  9. Reyes, J.F., Steven Montealegre, J., Castano, Y.J., Urcuqui, C., Navarro, A.: LSTM and Convolution Networks exploration for Parkinson’s Diagnosis. In: IEEE Colombian Conference on Communications and Computing, COLCOM 2019, Proceedings, pp. 2–5 (2019). https://doi.org/10.1109/ColComCon.2019.8809160

  10. Paragliola, G., Coronato, A.: Gait anomaly detection of subjects with Parkinson’s disease using a deep time series-based approach. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2882245

    CrossRef  Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    CrossRef  Google Scholar 

  12. Peng, C.Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002). https://doi.org/10.1080/00220670209598786

    CrossRef  Google Scholar 

  13. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22(5), 717–727 (2000). https://doi.org/10.1016/S0731-7085(99)00272-1. ISSN 0731-7085

    CrossRef  Google Scholar 

  14. Song, Y.Y., Lu, Y.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130–135 (2015). https://doi.org/10.11919/j.issn.1002-0829.215044

    CrossRef  Google Scholar 

  15. Salmi, N., Rustam, Z.: Naïve Bayes classifier models for predicting the colon cancer. IOP Conf. Ser. Mater. Sci. Eng. 546(5) (2019). https://doi.org/10.1088/1757-899X/546/5/052068

  16. Goldberger, A.L.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation (2000). https://doi.org/10.1161/01.cir.101.23.e215

    CrossRef  Google Scholar 

  17. Performance Measures: Cohen’s Kappa statistic - The Data Scientist, 2 September 2020. https://thedatascientist.com/performance-measures-cohens-kappa-statistic

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gawade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Gawade, A., Pandharkar, R., Deolekar, S., Salunkhe, U. (2021). Early Diagnosis of Parkinson’s Disease Using LSTM: A Deep Learning Approach. In: , et al. Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020). SoCPaR 2020. Advances in Intelligent Systems and Computing, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-030-73689-7_44

Download citation