Skip to main content

Prediction of Concrete Breakout Strength of Single Anchors in Shear

  • Conference paper
  • First Online:
18th International Probabilistic Workshop (IPW 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 153))

Included in the following conference series:

  • 729 Accesses

Abstract

This study proposes a machine learning algorithim—a Gaussian process regression (GPR)—for predicting the concrete breakout capacity of single anchors in shear. To this end, experimental strength of 366 tests on single anchors with concrete edge breakout failures were collected from literature to establish the experimental database to train and test the model. 70% of the data were used for the model training, and the rest were used for the model testing. Shear influence factors such as the concrete strength, the anchor diameter, the embedment depth (technically the influence length), and the concrete edge distance were taken as the model input variables. The generated predictive model yielded a determination coefficient \({\text{R}}^{2}\) = 0.99 for both the training and testing data sets. Predictions from the developed models were compared to that of the other existing models (Eurocode 2 and ACI 318) to validate its performance. The developed model provided a better prediction of the experimentally observed shear strength, compared to the existing models, yielding low mean absolute error, low bias and variability when tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeli, H. (1986). Artificial intelligence in structural engineering. Engineering Analysis, 3(3), 154–160.

    Article  Google Scholar 

  2. Alqedra, M. A., & Ashour, A. F. (2005). Prediction of shear capacity of single anchors located near a concrete edge using neural networks. Computers and structures, 83(28–30), 2495–2502.

    Article  Google Scholar 

  3. Sakla, S. S., & Ashour, A. F. (2005). Prediction of tensile capacity of single adhesive anchors using neural networks. Computers and structures, 83(21–22), 1792–1803.

    Article  Google Scholar 

  4. Olalusi, O. B., & Spyridis, P. (2020). Machine learning-based models for the concrete breakout capacity prediction of single anchors in shear. Advances in Engineering Software, 147, 102832.

    Article  Google Scholar 

  5. Hoang, N. D., Pham, A. D., Nguyen, Q. L., & Pham, Q. N. (2016). Estimating compressive strength of high performance concrete with Gaussian process regression model. Advances in Civil Engineering.

    Google Scholar 

  6. Technical Committee 250/European Committee for Standardisation (CEN/TC 250). EN 1992-4 Eurocode 2. (2018). Design of concrete structures. Design of fastenings for use in concrete.

    Google Scholar 

  7. ACI Committee and International Organization for Standardization. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary. American Concrete Institute.

    Google Scholar 

  8. Hofmann, J. (2004). Tragverhalten und Bemessung von Befestigungen unter beliebiger Querbelastung in ungerissenem Beton. (Load—Bearing behavior and design of fastenings under arbitrary shear loading in uncracked concrete—In German). Dissertation, University of Stuttgart.

    Google Scholar 

  9. Fuchs, W., Eligehausen, R., & Breen, J. E. (1995). Concrete capacity design (CCD) approach for fastening to concrete. Structural Journal, 92(1), 73–94.

    Google Scholar 

  10. Lee, N. H., Park, K. R., & Suh, Y. P. (2010). Shear behavior of headed anchors with large diameters and deep embedments. ACI Structural Journal, 107(2).

    Google Scholar 

  11. Bentsen, F. H. (2019). Model Construction with Support Vector Machines and Gaussian Processes through Kernel Search (Master's thesis, The University of Bergen).

    Google Scholar 

  12. Ueda, T., Kitipornchai, S., & Ling, K. (1990). Experimental investigation of anchor bolts under shear. Journal of Structural Engineering, 116(4), 910–921.

    Article  Google Scholar 

  13. Ueda, T., Stitmannaithum, B., & Matupayont, S. (1991). Experimental investigation on shear strength of bolt anchorage group. Structural Journal, 88(3), 292–300.

    Google Scholar 

  14. Dong-Hyun, K., Yong-Myung, P., Ho-Jung, J., & Moon-Ki, K. (2014). Concrete breakout capacity of cast-in-place anchor under shear loading. Advanced Materials Research.

    Google Scholar 

  15. Hofmann, J., Fuchs, W., & Eligehausen, R. (2004). Quertragfähigkeit randnaher Befes-tigungsmittel mit Belastung senkrecht zum Bauteilrand (Behavior of anchorages arranged close to the edge and loaded towards the edge). In: Beton- und Stahlbetonbau; 99 No. 10, pp. 806–807 (in German).

    Google Scholar 

  16. Shaikh, A. F., & Yi, W. (1985). In-place strength of welded headed studs. PCI Journal, 30(2), 56–81.

    Article  Google Scholar 

  17. Toth, M., Bokor, B., & Sharma, A. (2019). Anchorage in steel fiber reinforced concrete–concept, experimental evidence and design recommendations for concrete cone and concrete edge breakout failure modes. Engineering Structures, 181, 60–75.

    Article  Google Scholar 

  18. Unterweger, A. (2008). Randnahe Anker unter Querlast mechanische Modellierung und Bemessung (Anchors close to edge under shear load). Vienna, Austria: Universität für Bo-denkultur, Dissertation, (In German).

    Google Scholar 

  19. Klingner, R. E., Muratli, H., & Shirvani, M. (1999). A technical basis for revision to anchorage criteria. Division of Engineering Technology, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission.

    Google Scholar 

  20. Grosser, P. (2010). Single anchors loaded in shear close to the edge in high strength concrete. Test Report, Stuttgart, Germany: Institute of Construction Materials, University of Stuttgart. Report No. E 10/19 – Bft/17, not published

    Google Scholar 

  21. Spyridis, P. (2011). Behavior of anchor groups under shear loads—Influence of assembly tolerances. Dissertation. University of Natural resources and Life Sciences of Vienna.

    Google Scholar 

  22. Senftleben, S. (2010). Zum Tragverhalten von randnahen Reihenbefestigungen beansprucht durch eine Querlast parallel zum Bauteilrand. (Behavior of multiple anchor connections close to the edge under shear loading parallel to the edge). Stuttgart, Germany: Institute of Construction Materials, University of Stuttgart, Diploma Thesis, (in German).

    Google Scholar 

  23. Gesoğlu, M., Güneyisi, E. M., Güneyisi, E., Yılmaz, M. E., & Mermerdaş, K. (2014). Modeling and analysis of the shear capacity of adhesive anchors post-installed into uncracked concrete. Composites Part B: Engineering, 60, 716–724.

    Article  Google Scholar 

  24. Olalusi, O. B., & Viljoen, C. (2020). Model uncertainties and bias in SHEAR strength predictions of slender stirrup reinforced concrete beams. Structural Concrete, 21(1), 316–332.

    Article  Google Scholar 

  25. Olalusi, O. B., & Spyridis, P. (2020). Uncertainty modelling and analysis of the concrete edge breakout resistance of single anchors in shear. Engineering Structures, 222, 111112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Spyridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olalusi, O.B., Spyridis, P. (2021). Prediction of Concrete Breakout Strength of Single Anchors in Shear. In: Matos, J.C., et al. 18th International Probabilistic Workshop. IPW 2021. Lecture Notes in Civil Engineering, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-030-73616-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73616-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73615-6

  • Online ISBN: 978-3-030-73616-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics