Skip to main content

Estimation of the Global Health Burden of Structural Collapse

  • Conference paper
  • First Online:
18th International Probabilistic Workshop (IPW 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 153))

Included in the following conference series:

Abstract

In this article, the global health burden of structural collapse is determined. To this end, mean ratios of structures to inhabitants are determined and applied to the world population, subdivided into industrialized and developing countries. Based on known collapse frequencies of structures, mean annual worldwide collapse numbers of structures are calculated. Furthermore, the average number of victims is estimated and then used to estimate worldwide victim numbers, considering not only fatalities but also injuries. These victim numbers are converted into “lost life years”, a parameter often used as a measure of a health risk and compared to some other causes of victims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancet. (2018). The global burden of disease study 2017(Vol. 392(10159), pp. 1683–2138, pp. e14–e18).

    Google Scholar 

  2. World Bank. (2014). Transport for health. The global burden of disease from motorized road transport. Washington D.C: Institute for Health Metrics and Evaluation, University of Washington, The World Bank Group.

    Google Scholar 

  3. ZIA. (2017). Zentraler Immobilien Ausschuss e.V.: Immobilienwirtschaft 2017, Berlin.

    Google Scholar 

  4. United Nations. (2018). Tracking progress towards inclusive, safe, resilient and sustainable cities and human settlements DG 11 Synthesis Report 2018, Nairobi, Kenya.

    Google Scholar 

  5. Berner, F., Kochendürfer, B., & Schach, R. (2013). Grundlagen der Baubetriebslehre. Band 1: Baubetriebswirtschaft, Leitfaden des Baubetriebs und der Bauwirtschaft B.G. Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden.

    Google Scholar 

  6. Proske, D. (2018a). Bridge collapse frequencies versus failure probabilities. Berlin: Springer.

    Google Scholar 

  7. ICOLD. (2018). International Commission on Large Dams: Role of Dams.

    Google Scholar 

  8. ITA. (2019). International Tunnelling and Underground Space Association, Chatelaine.

    Google Scholar 

  9. Wyss, M., Tolis, S., Rosset, P., & Pacchiani, F. (2013). Approximate model for worldwide building stock in three size categories of settlements. Geneva: World Agency of Planetary Monitoring & Earthquake Risk Reduction.

    Google Scholar 

  10. Krausmann, F., Wiedenhofer, D., Lauk, Chr., Haas, W., Tanikawa, H., Fishman, T., Miatto, A., Schandl, H., & Haberl, H. (2017). Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. PNAS, 114(8), 1880–1885; first published February 6, https://doi.org/https://doi.org/10.1073/pnas.1613773114.

  11. Naviant Research. (2018). Global building stock database—Commercial and residential building floor space by country and building type (pp. 2017–2026). Chicago.

    Google Scholar 

  12. Zhao, W., Moncaster, A., Reiner, D. M., & Guthrie, P. (2019). Estimation lifetimes and stock turnover dynamics of urban residential buildings in China. Sustainability, 1, 3720, 18 pages.

    Google Scholar 

  13. Bilham, R. (2009). The seismic future of cities. Bulletin of Earthquake Engineering, 49 pages. https://doi.org/10.1007/s10518-009-9147-0.

  14. Statistische Ämter des Bundes und der Länder. (2015). Zensus 2011: Die Gebäude und Wohnungszählung (p. 2015). Dezember: Hannover.

    Google Scholar 

  15. Pluto Database. (2019). Department of City Planning, NYC.

    Google Scholar 

  16. Proske, D. (2017). Comparison of computed and observed probabilities of failure and core damage frequencies. In R. Caspeele, L. Taerwe, & D. Proske (Eds.), 14th International Probabilistic Workshop (pp. 109–122). Cham: Springer.

    Chapter  Google Scholar 

  17. Jaiswal, K. S., & Wald, D. J. (2008). Creating a global building inventory for earthquake loss assessment and risk management: 2008, (U.S. Geological Survey Open-File Report 2008-1160), 103 pages

    Google Scholar 

  18. U.S. Geotechnical Survey. (2019). Rapid assessment of an earthquakes impact (PAGER).

    Google Scholar 

  19. Moura, M. C. P., Smith, S. J., Belzer, D. B. (2015). 120 Years of U.S. Residental housing stock and floor space. PLoS ONE, 10, 8: e0134135, 1–18. https://doi.org/10.1371/journal.pone.0134135, August 2015.

  20. Hu, M., Bergsdal, H., van der Voet, E., Huppes, G., & Müller, D. B. (2010). Dynamics of urban and rural housing stocks in China. Building Research and Information, 38(3), 301–317.

    Article  Google Scholar 

  21. Hong, L., Zhou, N., Feng, W., Khanna, N., Fridley, D., Zhao, Y., & Sandholt, K. (2016). Building stock dynamics and its impacts on materials and energy demand in China. Energy Policy, 94, 47–55.

    Google Scholar 

  22. Bachofer, F., Braun, A., Adamietz, F., Murray, S., d Angelo, P., Kyazze, E., Mumuhire, A. P., & Bower, J. (2019). Build. Stock and building typology of Kigali, Ruanda, 4, 105.

    Google Scholar 

  23. Proske, D. (2018b). Comparison of large dam failure frequencies with failure probabilities. 16th International Probabilistic Workshop, Beton- und Stahlbetonbau, 9, pp. 2–6.

    Google Scholar 

  24. BUND. (2014). Bund für Umwelt und Naturschutz Deutschland: Weltwassertag 2014.

    Google Scholar 

  25. Proske, D., Spyridis, P., & Heinzelmann, L. (2019). Comparison of tunnel failure frequencies and failure probabilities. International Probabilistic Workshop, pp. 177–184

    Google Scholar 

  26. BfS (2019): Bundesamt für Statistik: Bevölkerung.

    Google Scholar 

  27. Destatis. (2019a). Bevölkerungsstand, 2019.

    Google Scholar 

  28. US Census Bureau. (2019). https://www.census.gov/en.html.

  29. DSW. (2018). Deutsche Stiftung Weltbevölkerung, Soziale und demografische Daten weltweit (DSW-DATENREPORT 2018) Hannover.

    Google Scholar 

  30. Office for National Statistics (2019): Population Estimates, 2019

    Google Scholar 

  31. HEV Schweiz. (2019). Wohneigentum in Zahlen.

    Google Scholar 

  32. Schiller, G., Ortlepp, R., Krauß, N., Steger, S., Schütz, H., Fernández, J. A., et al. (2015). (2015): Kartierung des anthropogenen Lagers in Deutschland zur Optimierung der Sekundärrohstoffwirtschaft. Dessau-Roßlau, Juli: Umweltbundesamt.

    Google Scholar 

  33. Tanikawa, H., Fishman, T., Okuoka, K., & Sugimoto, K. (2015). The weight of society over time and space—A comprehensive account of the construction material stock of Japan, 1945–2010. Journal of Industrial Ecology, 9(5), 778–791. https://doi.org/10.1111/jiec.12284.

    Article  Google Scholar 

  34. Fabbri, M. (2012). Clean energy package: Why buildings matter. Presentation Buildings_101_PBIE.pptx.

    Google Scholar 

  35. Kroker, H. (2013). Deutschlands Brücken vor dem Kollapse, Die Welt, 3.6.2013, https://www.welt.de/116759711.

  36. Alogdianakis, F., Charmpis, D. C., & Balafas, I. (2019). A method to probabilistically estimate the future condition of aging bridges using recorded inspection. Presentation at the 17th International Probabilistic Workshop, 11-13 September 2019, Edinburgh, Heriot-Watt University.

    Google Scholar 

  37. Fachgruppe für Untertagebau. (2018). Anzahl der Tunnel und Stollen, https://www.swisstunnel.ch/tunnelbau-schweiz/uebersichtsgrafiken/anzahl-tunnel/.

  38. Destatis. (2019b). Anzahl der Wohngebäude in Deutschland in den Jahren 2000 bis 2017 (in 1.000).

    Google Scholar 

  39. Behnisch, M., Meinel, G., Burckhardt, M., & Hecht, R. (2012). Auswertungen zum Gebäudebestand in Deutschland auf Grundlage digitaler Geobasisdaten. In G. Meinel, U. Schumacher, M. Behnisch, (Hrsg.) Flächennutzungsmonitoring IV. Genauere Daten – informierte Akteure – praktisches Handeln (pp. 151–158). Berlin: IÖR Schriften 60.

    Google Scholar 

  40. Kleist, I., Thicken, A. H., Köhler, P., Müller, M., Seifert, I., Borst, D., & Werner, U. (2006). Estimation of the regional stock of residential buildings as a basis for a comparative risk assessment in Germany. Natural Hazards and Earth Systems Sciences, 6, 541–552.

    Article  Google Scholar 

  41. ICOLD. (2019). World register of dams.

    Google Scholar 

  42. Duden. (2016). Wirtschaft von A bis Z: Grundlagenwissen für Schule und Studium, Beruf und Alltag. 6. Aufl. Mannheim: Bibliographisches Institut 2016. Lizenzausgabe Bonn: Bundeszentrale für politische Bildung.

    Google Scholar 

  43. Wardhana, A., & Hadipriono, F. C. (2003). Study of recent building failures in the United States. Journal of Performance of Construction Facilities, ASCE, 8(2003), 151–158.

    Article  Google Scholar 

  44. Zhang, L., Peng, M., Chang, D., & Xu, Y. (2016). Dam failure mechanisms and risk assessment. Singapore: Wiley .

    Book  Google Scholar 

  45. Norio, O., Ye, T., Kajitani, Y., Shi, P., & Tatano, H. (2011). The 2011 Eastern Japan great earthquake disaster: Overview and comments. International Journal Disaster Risk Science, 2(1), 34–42.

    Article  Google Scholar 

  46. Kazama, M., & Noda, T. (2012). Damage statistics (Summary of the 2011 off the Pacific Coast of Tohoku earthquake damage). Soils and Foundations, 52(5), 780–792.

    Article  Google Scholar 

  47. Bilham, R. (2010). Lessons from the Haiti Earthquake. Nature, 463(18), 878–879.

    Article  Google Scholar 

  48. Daniell, J. E., Khazai, B., Wenzel, F., & Vervaek, A. (2011). The CATDAT damaging earthquakes database. Natural Hazards and Earth Systems Sciences, 11, 2235–2251.

    Article  Google Scholar 

  49. Guha-Sapir, D., & Vos, F. (2011). Earthquakes, an epidemiological perspective on pattern and trends. In Human casualties in earthquakes, progress in modelling and mitigation, spence (pp. 13–24). Heidelberg, London, New York: So and Scawthorn, Springer.

    Google Scholar 

  50. Nichols, J. M., & Beavers, J. E. (2008). World earthquake fatalities from the past: Implifications for the present and future. National Hazards Review, 9(4), 179–189.

    Article  Google Scholar 

  51. Guha-Sapir, D., Hoyois, P., Wallemacq, P., & Below, R. (2016). Annual disaster statistical review 2016: The numbers and trends. Brussels: Centre for Research on the Epidemiology of Disasters.

    Google Scholar 

  52. Holzer, T. L., & Savage, J. C. (2013). Global earthquake fatalities and population. Earthquake Spectra, 29(1), 155–175

    Google Scholar 

  53. Coburn, A. W., Spence R. J. S., & Pomonis A. (1992). Factors determining human casualty levels in earthquakes: Mortality prediction in building collapse. In Tenth World Conference Earthquake Engineering (pp. 5989–5994). Balkema, Rotterdam.

    Google Scholar 

  54. Jonkman, S. N. (2005). Global perspectives on loss of human life caused by floods. Natural Hazards, 34, 151–175. https://doi.org/10.1007/s11069-004-8891-3.

    Article  Google Scholar 

  55. Proske, D. (2008). Catalogue of risks. Berlin, Heidelberg: Springer Verlag.

    Book  Google Scholar 

  56. Zhang, S. (1993). A comprehensive approach to the observation and prevention of debris flows in China. Natural Hazards, 7, 1–23.

    Article  Google Scholar 

  57. Curbach, M., & Proske, D. (2004). Risikountersuchung am Beispiel historischer Brücken unter Schiffsanprall, Beton- und Stahlbetonbau, 99, 12. Dezember, 2004, 956–966.

    Google Scholar 

  58. Asante, L. A., & Sasu, A. (2018). The challenge of reducing the incidence of building collapse in Ghana: Analyzing the perspectives of building inspectors in Kumasi. SAGE Open, 2018, 1–2.

    Google Scholar 

  59. Ayodeij, O. (2011). An examination of the causes and effects of building collapse in Nigeria. Journal of Design and Built Environment, 9, 37–47.

    Google Scholar 

  60. Kuwata, Y., Takada, S., & Bastami, M. (2005). Building damage and human casualties during the Bam-Iran earthquake. Asian Journal of Civil Engineering, 6(1–2), 1–9.

    Google Scholar 

  61. GEO. (2002). Geotechnical engineering office: QRA of collapses and excessive displacement of deep excavations (GEO Report 124) Hong Kong, February 2002.

    Google Scholar 

  62. Wyss, M., & Trendafiloski, G. (2009). Trends in the casualty ration of injured to fatalities in earthquakes. Second International Workshop on Disaster Casualties, 15–16 June 2009, University of Cambridge, UK, pp. 1–6.

    Google Scholar 

  63. Jonkman, S. N. (2003). Loss of life caused by floods: An overview of mortality statistics for worldwide floods. Delft Cluster.

    Google Scholar 

  64. Rackwitz, R. (1998). Zuverlässigkeit und Lasten im konstruktiven Ingenieurbau. Zuverlässigkeitstheoretische Grundlagen: Technische Universität München, Teil I.

    Google Scholar 

  65. Lentz, A. (2006). Acceptability of civil engineering decisions involving human consequences (Dissertation) TU München, München.

    Google Scholar 

  66. Maag, T. (2004). Risikobasierte Beurteilung der Personensicherheit von Wohnbauten im Brandfall unter Verwendung von Bayes`schen Netzen (Doctorial Thesis) IBK Bericht, vol. 282, Zürich: vdf Hochschulverlag AG an der ETH Zürich.

    Google Scholar 

  67. Cohen, B. L. (1991). Catalogue of risks extended and updated. Health Physics, 61(3), 317–335.

    Google Scholar 

  68. Haagsma, J. A., Graetz, N., Bolliger, I., et al. (2016). The global burden of injury: Incidence, mortality, disability-adjusted life years and time trends from the global burden of disease study 2013. Injury Prevention, 22, 3–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Proske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Proske, D. (2021). Estimation of the Global Health Burden of Structural Collapse. In: Matos, J.C., et al. 18th International Probabilistic Workshop. IPW 2021. Lecture Notes in Civil Engineering, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-030-73616-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73616-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73615-6

  • Online ISBN: 978-3-030-73616-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics