Skip to main content

Utilization of Nanofertilizers in Crop Tolerance to Abiotic Stress

  • Chapter
  • First Online:
Nanobiotechnology

Abstract

Abiotic stresses severely affect plant growth, development, production and quality. These stresses are the main reason for decreased productivity worldwide accompanied by an increasing human population. This necessitates developing novel solutions to achieve sustainability and overcome these problems. Recently, a new era has begun to emerge, the era of nanotechnology. It improved the ability crops to deal with abiotic stress and primary or secondary metabolic function. The present chapter provides insight on the relationship between abiotic stresses and nanotechnology together with nanofertilizers, their characteristics/roles as well as their comparison with conventional fertilizers. Moreover, this chapter not only highlights the interaction between NPs and plants on several growth stages, but also the importance of nanotechnology in the purification of irrigation water, the effect of different nanoparticles on crops cultivated under abiotic stress with their possible toxicity impact on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel Latef AAH, Srivastava AK, El-Sadek MSA et al (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Article  Google Scholar 

  • Adesemoye A, Kloepper J (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Aken VB (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219

    Article  PubMed  CAS  Google Scholar 

  • Alharby HF, Metwali EMR, Fuller MP et al (2016) Induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum MILL.) under salt stress. Arch Biol Sci 68(4):723–735. https://doi.org/10.2298/abs151105017a

  • Ali S, Khan I, Khan SA et al (2017) Electrocatalytic performance of Ni@ Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J Electroanal Chem 795:17–25

    Article  CAS  Google Scholar 

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics 9(1):106–114

    Google Scholar 

  • Alsaeedi AH, El-Ramady H, Alshaal T et al (2017) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res 24(27):21917–21928. https://doi.org/10.1007/s11356-017-9847-y

    Article  CAS  Google Scholar 

  • Andersen CP, King G, Plocher M et al (2016) Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol Chem 35:2223–2229. https://doi.org/10.1002/etc.3374

    Article  CAS  PubMed  Google Scholar 

  • Antisari LV, Carbone S, Gatti A et al (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22(3):1841–1853

    Article  CAS  Google Scholar 

  • Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577. https://doi.org/10.1111/j.1365-3040.2009.01952.x

    Article  CAS  PubMed  Google Scholar 

  • Babaei K, Sharifi RS, Pirzad A et al (2017) Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. J Plant Interact 12(1):381–389. https://doi.org/10.1080/17429145.2017.1371798

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13(5):R15

    Article  CAS  Google Scholar 

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69(11):2753–2758. https://doi.org/10.1093/jxb/ery157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein N, Ioffe M, Luria G et al (2011) Effects of K and N nutrition on function and production of Ranunculus asiaticus. Pedosphere 21:288–301. https://doi.org/10.1016/S1002-0160(11)60129-X

    Article  CAS  Google Scholar 

  • Bhati-Kushwaha H, Kaur A, Malik CP (2013) The synthesis and role of biogenic nanoparticles in overcoming chilling stresses. Ind J Plant Sci 2:54–62

    Google Scholar 

  • Bombin S, LeFebvre M, Sherwood J et al (2015) Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci 16(10):4174–24193

    Article  CAS  Google Scholar 

  • Boonyanitipong B, Kositsup B, Kumar P et al (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 1:282–285

    Google Scholar 

  • Bruna HCO, Gomes CR, Milena T et al (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19

    Article  CAS  Google Scholar 

  • Cai F, Wu XY, Zhang HY et al (2017) Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). Nanoimpact 5:101–108. https://doi.org/10.1016/j.impact.2017.01.006

    Article  Google Scholar 

  • Calanca PP (2017) Effects of abiotic stress in crop production. In: Ahmed M, Stockle C (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Cham, pp 165–180

    Chapter  Google Scholar 

  • Campbell EE, Fowler PW, Mitchell D, Zerbetto F (1996) Increasing cost for Pentagon adjacency for higher fullerenes. Chem Phys Lett 250:544–548

    Article  CAS  Google Scholar 

  • Chekli L, Phuntsho S, Roy M et al (2013) Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter. Sci Total Environ 461–462:19–27

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Unrine JM, Judy JD et al (2015) Toxicogenomic responses of the model legume Medicago truncatula to aged biosolids containing a mixture of nanomaterials (TiO2, Ag, and ZnO) from a pilot wastewater treatment plant. Environ Sci Technol 49:8759–8768. https://doi.org/10.1021/acs.est.5b01211

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Zhang CB, Zhao YL et al (2018) Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Pollut Res 25(3):2361–2368. https://doi.org/10.1007/s11356-017-0681-z

    Article  CAS  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Chittaranjan K, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37. https://doi.org/10.1186/1472-6750-13-37

    Article  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45. https://doi.org/10.1186/1471-2229-9-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S et al (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49. https://doi.org/10.1016/j.plaphy.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  • Cui H X, Sun C J, Liu Q et al (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International Conference on Nano Agri, Sao Pedro, Brazil, pp 28–33

    Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS et al (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36(9):882–897

    Article  CAS  PubMed  Google Scholar 

  • Dalzochio T, Rodrigues GZP, Simões LAR et al (2018) In situ monitoring of the Sinos River, southern Brazil: water quality parameters, biomarkers, and metal bioaccumulation in fish. Environ Sci Pollut Res 25:9485–9500

    Article  CAS  Google Scholar 

  • Davar F, Zareii AR, Amir H (2014) Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.). Int J Adv Biol Biomed Res 2:1150–1159

    Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M et al (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. https://doi.org/10.1038/nnano.2010.2

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE et al (2013) Fate of CuO and ZnO nano and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Belliraj N, Bossmann SH et al (2018a) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3(3):2479–2491. https://doi.org/10.1021/acsomega.7b01934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djanaguiraman M, Nair R, Giraldo JP et al (2018b) Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega 3(10):14406–14416. https://doi.org/10.1021/acsomega.8b01894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Gardea-Torresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893. https://doi.org/10.1021/acs.est.5b03055

    Article  CAS  PubMed  Google Scholar 

  • Du W, Gardea-Torresdey JL, Xie Y et al (2017) Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Sci Total Environ 578:408–416

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Huang YC, Grusak MA et al (2014) Effects of nano-TiO2 on the agronomically relevant Rhizobium-legume symbiosis. Sci Total Environ 466:503–512. https://doi.org/10.1016/j.scitotenv.2013.07.032

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015) The state of food and agriculture. Social protection and agriculture: Breaking the cycle of rural poverty. UN Food and Agriculture Organization, Rome, Italy

    Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018) Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255(3):953–962. https://doi.org/10.1007/s00709-017-1202-0

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P et al (eds) Sustainable agriculture. Springer, Dordrecht

    Google Scholar 

  • Fathi A, Zahedi M, Torabian S (2017a) Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. J Plant Nutr 40(19):2745–2755. https://doi.org/10.1080/01904167.2017.1381731

    Article  CAS  Google Scholar 

  • Fathi A, Zahedi M, Torabian S, Khoshgoftar A (2017b) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40:1376–1385

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N et al (2012) Impact of bulk and nano-sized titanium dioxide on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101. https://doi.org/10.1007/s12011-011-9222-7

    Article  CAS  PubMed  Google Scholar 

  • Flessa H, Ruser R, Dörsch P et al (2002) Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric Ecosys Environ 91:175–189

    Article  CAS  Google Scholar 

  • Foltête AS, Masfaraud JF, Bigorgne E et al (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159(10):2515–2522

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Hong F, Liu C et al (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Element Res 111(1–3):239–253

    Article  CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D et al (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780. https://doi.org/10.1016/j.scitotenv.2018.06.356

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi A, Farahvash F (2018) Effect of nano-zinc foliar application on wheat under drought stress. Fresen Environ Bull 27(7):5022–5026

    CAS  Google Scholar 

  • Ghermandi A, Messalem R (2009) Solar-driven desalination with reverse osmosis: the state of the art. Desalin Water Treat 7(1–3):285–296

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann Bot 101:187–195. https://doi.org/10.1093/aob/mcm283

    Article  PubMed  Google Scholar 

  • Gui X, Zhang Z, Liu S et al (2015) Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10(8):1–10. https://doi.org/10.1371/journal.pone.0134261

    Article  CAS  Google Scholar 

  • Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hort 178:231–240

    Article  CAS  Google Scholar 

  • Haghighi M, Afifipour Z, Mozafariyan M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  • Haghighi M, Da Silva JAT, Mozafarian M et al (2013) Can Si and nano-Si alleviate the effect of drought stress induced by PEG in seed germination and seedling growth of tomato? Minerva Biotechnol 25(1):17–22

    Google Scholar 

  • Hernandez-Hernandez H, Gonzalez-Morales S, Benavides-Mendoza A et al (2018) Effects of chitosan-PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23(1):178. https://doi.org/10.3390/molecules23010178

    Article  CAS  PubMed Central  Google Scholar 

  • Hojjat SS (2016) The effect of silver nanoparticle on lentil seed germination under drought stress. Intl J Farm Alli Sci 5(3):208–212

    Google Scholar 

  • Hojjat SS, Kamyab M (2017) The effect of silver nanoparticle on fenugreek seed germination under salinity levels. Rus Agric Sci 43(1):61–65

    Article  Google Scholar 

  • Huang Q, Liu Q, Lin LN et al (2018) Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles. Ecotox Environ Saf 159:261–271. https://doi.org/10.1016/j.ecoenv.2018.05.008

    Article  CAS  Google Scholar 

  • Hussain A, Ali S, Rizwan M et al (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Hussain HA, Men S, Hussain S et al (2020) Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants 9(6):720

    Article  CAS  PubMed Central  Google Scholar 

  • Hussein MM, Abou-Baker NH (2018) The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Soc Open Sci 5(8): https://doi.org/10.1098/rsos.171809

    Article  CAS  Google Scholar 

  • Iqbal M, Raja NI, Zia-Ur-Rehman M et al (2017) Effect of silver nanoparticles on growth of wheat under heat stress. Iran J Sci Technol Trans Sci 2017:1–9. https://doi.org/10.1007/s40995-017-0417-4

    Article  Google Scholar 

  • Javed R, Usman M, Yucesan B et al (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99. https://doi.org/10.1016/j.plaphy.201605.032

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Zhou Y, Ma CX et al (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93. https://doi.org/10.1016/j.plaphy.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  • Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46(15):8467–8474

    Article  CAS  PubMed  Google Scholar 

  • Kaveh R, Li YS, Ranjbar S et al (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK et al (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209. https://doi.org/10.1016/j.plaphy.2016.05.038

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS et al (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kràľovà K, Masarovičovà E, Jampίlek J (2019) Plant responses to stress induced by toxic metals and their nanoforms. In: Pessarakli M (ed) Handbook of plant and crop stress, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  • Kumar S, Sachdeva S, Bhat KV et al (2018) Plant responses to drought stress: physiological, biochemical and molecular basis. In: Vats S (ed) Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 1–25. https://doi.org/10.1007/978-981-10-9029-5_1

  • Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle specific changes in Arabidopsis thaliana gene expression after exposure to ZnO2TiO2 and fullerene soot. J Hazard Mater 241:55–62

    Article  PubMed  CAS  Google Scholar 

  • Larue C, Veronesi G, Flank AM et al (2013) Comparative uptake and impact of TiO2 nanoparticles. J Toxicol Env Heal A 75:722–734. https://doi.org/10.1080/15287394.2012.689800

    Article  CAS  Google Scholar 

  • Latef AAHA, Abu Alhmad MF, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70. https://doi.org/10.1007/s00344-016-9618-x

    Article  CAS  Google Scholar 

  • Lau WJ, Gray S, Matsuura T et al (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–324

    Article  CAS  PubMed  Google Scholar 

  • Lemraski MG, Normohamadi G, Madani H et al (2017) Two Iranian rice cultivars’ response to nitrogen and nano-fertilizer. Open J Ecol 7:591–603

    Article  Google Scholar 

  • Levy D, Tai GCC (2013) Differential response of potatoes (Solanum tuberosum L.) to salinity in an arid environment and field performance of the seed tubers grown with fresh water in the following season. Agric Water Manag 116:122–127

    Article  Google Scholar 

  • Li J, Hu J, Ma C et al (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334

    Article  CAS  PubMed  Google Scholar 

  • Li R, Jin X, Megharaj M et al (2015) Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chem Eng J 264:587–594

    Article  CAS  Google Scholar 

  • Li X, Gui X, Rui Y et al (2014) Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–180

    Article  CAS  PubMed  Google Scholar 

  • Linh TM, Mai NC, Hoe PT et al (2020) Metal-based nanoparticles enhance drought tolerance in soybean. J Nanomaterials 2020:ID 4056563. https://doi.org/10.1155/2020/4056563

  • Liscano JF, Wilso CE, Norman-Jr RJ, Slaton NA (2000) Zinc availability to rice from seven granular fertilizers. Arkansas Agric Exp Stat Res B 963:1–31

    Google Scholar 

  • Liu J, Dhungana B, Cobb GP (2018) Copper oxide nanoparticles and arsenic interact to alter seedling growth of rice (Oryza sativa japonica). Chemosphere 206:330–337. https://doi.org/10.1016/j.chemosphere.2018.05.021

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu J, Sun DD (2012) Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification. Catal Sci Technol 2:2525–2532

    Article  CAS  Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):1–14

    Article  CAS  Google Scholar 

  • Liu Y, Li X, Xing Z et al (2013) Responses of soil microbial biomass and community composition to biological soil crusts in the revegetated areas of the Tengger Desert. Appl Soil Ecol 65:52–59

    Article  Google Scholar 

  • López-Moreno ML, De La Rosa G, Cruz-Jimenez G et al (2017) Effect of ZnO nanoparticles on corn seedlings at different temperatures: x-ray absorption spectroscopy and ICP/OES studies. Microchem J 134:54–61. https://doi.org/10.1016/j.microc.2017.05.007

    Article  CAS  Google Scholar 

  • López-Moreno ML, De La Rosa G, Hernandez-Viezcas JA et al (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320. https://doi.org/10.1021/es903891g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Moreno ML, De La Rosa G, Hernandez-Viezcas JA et al (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma J, Li XL, Xu H et al (2007) Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field. Aust J Soil Res 45:359–367

    Article  CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061. https://doi.org/10.1016/j.scitotenv.2010.03.031

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Muhammad Z, Islam S et al (2018) Salinity imposed stress on principal cereal crops and employing seed priming as a sustainable management approach. Acta Ecol Sin 39(4):280–283. https://doi.org/10.1016/j.chnaes.2018.09.004

    Article  Google Scholar 

  • Majumdar S, Almeida IC, Arigi EA et al (2015) Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): a proteomic analysis. Environ Sci Technol 49:3283–13293. https://doi.org/10.1021/acs.est.5b03452

    Article  CAS  Google Scholar 

  • Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticult 3:52. https://doi.org/10.3390/horticulturae3040052

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Martínez-Fernández D, Vitkova M, Bernal MP et al (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226:101. https://doi.org/10.1007/s11270-015-2365-y

  • Masarovičovà E, Kràľovà K, Vykoukovà I et al (2019) Responses of medicinal plants to abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop stress, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Mattiello A, Pošćić F, Musetti R et al (2015) Evidence of genotoxicity and phytotoxicity in Hordeum vulgare exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6:1043. https://doi.org/10.3389/fpls.2015.01043

    Article  PubMed  PubMed Central  Google Scholar 

  • Mc Murray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A Chem 182(1):43–51

    Article  CAS  Google Scholar 

  • Miransari M (2011) Soil nutrients. Nova, New York. ISBN 978-1-61324-785-3

    Google Scholar 

  • Mohammadi H, Hatami M, Feghezadeh K et al (2018) Mitigating effect of nano-zerovalent iron, iron sulfate and EDTA against oxidative stress induced by chromium in Helianthus annuus L. Acta Physiol Plant 40(4):69. https://doi.org/10.1007/s11738-018-2647-2

    Article  CAS  Google Scholar 

  • Mohammadi R, Amiri NM, Mantri L (2013a) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61:768–775

    Article  CAS  Google Scholar 

  • Mohammadi R, Amiri RM, Abbasi A (2013b) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152:403–410

    Article  CAS  PubMed  Google Scholar 

  • Moon JW, Phelps TJ, Fitzgerald CL et al (2016) Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Appl Microbiol Biotechnol 100:7921–7931. https://doi.org/10.1007/s00253-016-7556-y

    Article  CAS  PubMed  Google Scholar 

  • Mozafari AA, Havas F, Ghaderi N (2018) Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria x ananassa Duch.) to cope with drought stress. Plant Cell Tissue Organ Cult 132(3):511–523. https://doi.org/10.1007/s11240-017-1347-8

  • Mrayed SM, Sanciolo P, Zou I et al (2011) An alternative membrane treatment process to produce low-salt and high-nutrient recycled water suitable for irrigation purposes. Desalination 274(19):144–149

    Article  CAS  Google Scholar 

  • Mueller NC, Braun J, Bruns J et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558

    Article  CAS  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteome 128:280–297

    Article  CAS  Google Scholar 

  • Mutlu F, Yurekli F, Mutlu B et al (2018) Assessment of phytotoxic and genotoxic effects of anatase TiO2 nanoparticles on maize cultivar by using RAPD analysis. Fresen Environ Bull 27(1):436–445

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Nawara HM, Mattar MZ, Salem KFM, Eissa OA (2017) Diallel study on some in vitro traits of bread wheat (Triticum aestivum L.) under salt stress. Inter J Agric Environ Res 3(1):1988–2006

    Google Scholar 

  • Nievola CC, Carvalho CP, Carvalho V et al (2017) Rapid responses of plants to temperature changes. Temperature 4(4):371–405. https://doi.org/10.1080/23328940.2017.1377812

    Article  Google Scholar 

  • Ochoa L, Medina-Velo IA, Barrios AC et al (2017) Modulation of CuO nanoparticles toxicity to green pea (Pisum sativum Fabaceae) by the phytohormone indole-3-acetic acid. Sci Total Environ 598:513–524

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Gaitis F (2011) The use of nano-technology in shelf life extension of green vegetables. J Innov Econ Manag 2:163–171

    Article  Google Scholar 

  • Panwar J, Jain N, Bhargaya A et al (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step Towards developing “Nano-fertilizers”. Proceeding of 3rd international conference on environmental research and technology. University of Sains, Penang, Malaysia, pp 248–352

    Google Scholar 

  • Parihar P, Singh S, Singh R et al (2015) Effect of salinity stress on plants and its tolerance strategies: A review. Environ Sci Pollut Res 22:4056–4075. https://doi.org/10.1007/s11356-014-3739-1

    Article  CAS  Google Scholar 

  • Patlolla AK, Berry A, May L et al (2012) Genotoxicity of silver nanoparticles in Vicia faba: A pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in Agriculture? Front Environ Sci 5:12. https://doi.org/10.3389/fenvs.2017.00012

    Article  Google Scholar 

  • Population Institute (2017) FAO says food production must rise by 70%. Available online at: www.populationinstitute.org/resources/populationonline/issue/1/8

  • Pošćić F, Mattiello A, Fellet G et al (2016) Effects of cerium and titanium oxide nanoparticles in soil on the nutrient composition of barley (Hordeum vulgare L.) kernels. Int J Environ Res Public Health 13:577. https://doi.org/10.3390/ijerph13060577

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Preetha PS, Balakrishnan N (2017) A review of nano fertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6(12):3117–3133

    Article  CAS  Google Scholar 

  • Qi MF, Liu YF, Li TL (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328. https://doi.org/10.1007/s12011-013-9833

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Brame J, Li Q et al (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Franke C, Chavalmane S et al (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288. https://doi.org/10.3389/fpls.2016.01288

    Article  PubMed  PubMed Central  Google Scholar 

  • Raliyaa R, Biswasa P, Tarafdarm JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiate L.). Biotechnol Rep 5:22–26. https://doi.org/10.1016/j.btre.2014.10.009

    Article  Google Scholar 

  • Rasouli F, Pouya AK, Karimian N (2013) Wheat yield and physico-chemical properties of a sodic soil from semiarid area of Iran as affected by applied gypsum. Geoderma 193:246–255

    Article  CAS  Google Scholar 

  • Rastmanesh F, Safaie S, Zarasv AR et al (2018) Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad river, west Iran. Environ Monit Assess 190:273. https://doi.org/10.1007/s10661-018-6650-2

    Article  CAS  PubMed  Google Scholar 

  • Regier N, Cosio C, von Moos N, Slaveykova VI (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Barrios AC, Tan W et al (2015a) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558. https://doi.org/10.1007/s11356-015-4243-y

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015b) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, pp 1–17

    Google Scholar 

  • Riera FA, Suarez A, Muro C et al (2013) Nanofiltration of UHT flash cooler condensates from a dairy factory: characterization and water reuse potential. Desalination 309:52–63

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Ali B et al (2018) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277. https://doi.org/10.1016/j.chemosphere.2018.09.120

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Sharifan H, Zhang WL et al (2018) Mutual effects and in planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max L. Merr.). Environ Sci-Nano 5(1):150–157. https://doi.org/10.1039/c7en00931c

  • Rossi L, Zhang WL, Lombardini L et al (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36. https://doi.org/10.1016/j.envpol.2016.09.060

    Article  CAS  PubMed  Google Scholar 

  • Ruffini Castiglione M, Giorgetti L, Bellani L et al (2016) Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environ Exp Bot 130:11–21. https://doi.org/10.1016/j.envexpbot.2016.05.002

    Article  CAS  Google Scholar 

  • Ruffini Castiglione M, Giorgetti L, Geri C et al (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 1:2443–2449. https://doi.org/10.1007/s11051-010-0135-8

    Article  CAS  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicol 6:353–360. https://doi.org/10.3109/17435390.2011.579631

    Article  CAS  Google Scholar 

  • Salem KFM, Matter M (2014) Identification of microsatellite alleles for salt tolerance at seedling stage in wheat (Triticum aestivum L.). Life Sci J 11(12s):1064–1073

    Google Scholar 

  • Salem KFM, Röder MS, Börner A (2007) Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res Common 35:1367–1374

    Article  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G et al (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Sarvendra-Kumar PA, Datta SC, Rosin KG et al (2015) Phytotoxicity of nanoparticles to seed germination of plants. Int J Adv Res 3:854–865

    CAS  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Horowitz AR, Nauen R (eds) Insecticides design using advanced technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46907-0_1

  • Savita TA, Singh SK (2020) Drought stress tolerance in legume crops. In: Hasanuzzaman M (ed) Agronomic crops. Springer, Singapore, pp 149–155

    Chapter  Google Scholar 

  • Sebastian A, Nangia A, Prasad MN (2017) Carbon-bound iron oxide nanoparticles prevent calcium-induced iron deficiency in Oryza sativa L. J Agric Food Chem 65(3):557–564. https://doi.org/10.1021/acs.jafc.6b04634

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Uni Timisoara 16:73–78

    Google Scholar 

  • Sha Valli Khan PS, Nagamallaiah GV, Dhanunjay RM et al (2018) Abiotic stress tolerance in plants: insights from proteomics. In: Ahmad P, Rosool S (eds) Emerging technologies and management of crop stress tolerance, v.2: a sustainable approach. Academic Press, San Diego, pp 23–68

    Google Scholar 

  • Shallan MA, Hassan HMM, Namich AAM et al (2016) Biochemical and physiological effects of TiO2 and SiO2 nanoparticles on cotton plant under drought stress. Res J Pharm Biol Chem Sci 7(4):1540–1551

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  PubMed  Google Scholar 

  • Shen CX, Zhang QF, Li J et al (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Shweta S, Tripathi DK, Chauhan DK et al (2018) Availability and risk assessment of nanoparticles in living systems: a virtue or a peril? In: Tripathi DK, Ahmad P, Sharma S et al (eds) Nanomaterials in plants, algae and microorganisms, Academic Press, London, 1:1–31

    Google Scholar 

  • Shweta S, Tripathi DK, Singh S et al (2016) Impact of nanoparticles on photosynthesis: Challenges and opportunities. Mater Focus 5(5):405–411

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M et al (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437. https://doi.org/10.1002/etc.2697

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M et al (2015) Role of nanoparticles in plants. In: Al-Whaibi M, Mohammad F, Siddiqui MH (eds) Nanotechnology and plant sciences. Springer, Basel, Switzerland, pp 19–35

    Chapter  Google Scholar 

  • Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. J Environ Manage 170:88–96. https://doi.org/10.1016/j.jenvman.2016.01.015

    Article  CAS  PubMed  Google Scholar 

  • Singh MD, Chirag G, Prakash PO et al (2017) Nano fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agri Sci 9:3831–3833

    CAS  Google Scholar 

  • Singh S, Tripathi DK, Dubey NK et al (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus 5(3):195–201

    Article  CAS  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H et al (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Chapter  Google Scholar 

  • Song U, Jun H, Waldman B et al (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. https://doi.org/10.1016/j.ecoenv.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  • Storozhenko V, Svietlova N, Kovalenko M et al (2019) Induction of wheat seedlings resistance of different ecotypes to the effect of a drought simulated by a colloidal solution of Cu2+ and Zn2+ nanoparticles. Bull T Shevchenko Nat Uni Kyiv-Biol 76(2):79–84

    Article  Google Scholar 

  • Sun L, Song F, Guo J et al (2020) Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int J Mol Sci 21(3):782. https://doi.org/10.3390/ijms21030782

    Article  CAS  PubMed Central  Google Scholar 

  • Tarafdar JC, Agarwal A, Raliya R et al (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatase by Aspergillus fungi. Adv Sci Eng Med 4:1–5

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorous nanoparticles from tri-calcium phosphate using Aspergillus tubigenesis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Taran N, Storozhenko V, Svietlova N et al (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12:60. https://doi.org/10.1186/s11671-017-1839-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4): https://doi.org/10.1371/journal.pone.0093793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor R, Walton DR (1993) The chemistry of fullerenes. Nature 363(6431):685

    Article  CAS  Google Scholar 

  • Thuesombat P, Hannongbua S, Ekgasit S et al (2016) Effects of silver nanoparticles on hydrogen peroxide generation and antioxidant enzyme responses in rice. J Nanosci Nanotechnol 16(8):8030–8043. https://doi.org/10.1166/jnn.2016.12754

    Article  CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2017) Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. J Plant Nutr 40(5):615–623. https://doi.org/10.1080/01904167.2016.1240187

    Article  CAS  Google Scholar 

  • Tripathi DK, Mishra RK, Singh S et al (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: Implication of the ascorbate–glutathione cycle. Front Plant Sci 8:1. https://doi.org/10.3389/fpls.2017.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh S, Singh VP et al (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci 4:46. https://doi.org/10.3389/fenvs.2016.00046

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM et al (2015) Silicon nanoparticles (SiNP) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198. https://doi.org/10.1016/j.plaphy.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  • Verma A (2016) Abiotic stress and crop improvement: current scenario. Adv Plants Agric Res 4:345–346

    Google Scholar 

  • Vessey KV (2003) Plant growth promoting rhizobacteria as biofertlizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidyalakshmi N, Thomas R, Aswani R et al (2017) Comparative analysis of the effect of silver nanoparticle and silver nitrate on morphological and anatomical parameters of banana under in vitro conditions. Inorg Nano Metal Chem 47:1530–1536. https://doi.org/10.1080/24701556.2017.1357605

    Article  CAS  Google Scholar 

  • Wang H, Kou X, Pei Z et al (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhao S, Zhao Y et al (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12(2):221–244. https://doi.org/10.4067/S0718-95162012000200003

    Article  Google Scholar 

  • Yan S, Zhao L, Li H et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kloepper J, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trend Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Yue N, Yun X (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9:915. https://doi.org/10.3389/fpls.2018.00915

    Article  Google Scholar 

  • Zaimenko NV, Didyk NP, Dzyuba OI et al (2014) Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite. Ecol Balk 6(1):1–10

    Google Scholar 

  • Zhang Y, Wu B, Xu H et al (2016) Nanomaterials-enabled water and wastewater treatment. Nano Impact 3:22–39

    Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR et al (2013) ZnO nanoparticles fate in soil and zinc bioaccumulation in corn plants Zea mays influenced by alginate. Environ Sci 15:260–266

    CAS  Google Scholar 

  • Zhao L, Lu L, Wang A et al (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68(7):1935–1947. https://doi.org/10.1021/acs.jafc.9b06615

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA et al (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921–2928. https://doi.org/10.1021/es5060226

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZJ, Wang H, Yan B et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398. https://doi.org/10.1021/es301977w

    Article  CAS  PubMed  Google Scholar 

  • Zuverza-Mena N, Martinez-Fernandez D, Du W et al (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses—a review. Plant Physiol Biochem 110:236–264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled F. M. Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salem, K.F.M., Alloosh, M.T., Saleh, M.M., Alnaddaf, L.M., Almuhammady, A.K., Al-Khayri, J.M. (2021). Utilization of Nanofertilizers in Crop Tolerance to Abiotic Stress. In: Al-Khayri, J.M., Ansari, M.I., Singh, A.K. (eds) Nanobiotechnology . Springer, Cham. https://doi.org/10.1007/978-3-030-73606-4_11

Download citation

Publish with us

Policies and ethics