Skip to main content

Biosynthesis and Characterization of Microorganisms-Derived Nanomaterials

  • Chapter
  • First Online:
Nanobiotechnology

Abstract

Nanotechnology is considered the newest advances in science that provide different methods to manufacture and develop diverse nanoparticles (NPs). Different metals can be prepared as NPs that can be used in various fields including biological systems. Ongoing research focuses on developing green methods for synthesizing NPs by using microorganisms. This chapter presents the importance of Nanotechnology. In addition to the different methods of synthesis NPs. Then emphasizes the various biological methods responsible for producing (silver, gold, copper, zinc, iron, palladium and selenium) NPs including the diverse metallic NPs using various promising microorganisms (virus, bacteria, actinomyces, algae, yeast and fungi) as a biogenic approach. Moreover, it also highlights the related molecular aspects of NPs that acted as reducing, capping and stabilizing agents together with the various factors influencing green syntheses like pH, temperature, as well as the concentrations of metal salts and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Tahon MA, Ghareib M, Abdallah WE (2020) Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochem 95:1–36. https://doi.org/10.1016/j.procbio.2020.04.015

    Article  CAS  Google Scholar 

  • Agarwal P, Gupta R, Agarwal N (2019) Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J Nanotechnol 2019: ID7392713. https://doi.org/10.1155/2019/7392713

  • Ağçeli GK, Hammachi H, Kodal SP et al (2020) A novel approach to synthesize TiO2 nanoparticles: Biosynthesis by using streptomyces sp. HC1. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01486-w

  • Ahiwale SS, Bankar AV, Tagunde S et al (2017) A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol 57:188–194. https://doi.org/10.1007/s12088-017-0640-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R et al (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod 55:202–206. https://doi.org/10.1016/j.indcrop.2014.01.026

    Article  CAS  Google Scholar 

  • Ahmad S, Munir S, Zeb N et al (2019) Green nanotechnology: a review on green synthesis of silver nanoparticles—an ecofriendly approach. Int J Nanomed 14:5087–5107. https://doi.org/10.2147/ijn.s200254

    Article  CAS  Google Scholar 

  • Ahmed T, Shahid M, Noman M et al (2020) Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9:1–17. https://doi.org/10.3390/pathogens9030160

    Article  CAS  Google Scholar 

  • Ahsan T (2020) Biofabrication of silver nanoparticles from Pseudomonas fluorescens to control tobacco mosaic virus. Egypt J Biol Pest Control 30:1–4. https://doi.org/10.1186/s41938020-00268-3

    Article  Google Scholar 

  • Ali J, Ali N, Wang L et al (2019) Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J Microbiol Methods 159:18–25

    Article  CAS  PubMed  Google Scholar 

  • Allam NG, Ismail GA, El-Gemizy WM, Salem MA (2019) Biosynthesis of silver nanoparticles by cell-free extracts from some bacteria species for dye removal from wastewater. Bio technol Lett 41:379–389. https://doi.org/10.1007/s10529-019-02652-y

    Article  CAS  Google Scholar 

  • Ameen F, Abdullah M, Al-Homaidan A et al (2020) Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. J MolStruct 1217: https://doi.org/10.1016/j.molstruc.2020.128392

    Article  CAS  Google Scholar 

  • Arsiya F, Sayadi MH, Sobhani S (2017) Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett 186:113–115. https://doi.org/10.1016/j.matlet.2016.09.101

    Article  CAS  Google Scholar 

  • Attia TMS, Elsheery NI (2020) Nanomaterials: Scope, applications, and challenges in agriculture and soil reclamation. In: Hayat S, Pichtel J, Faizan M, Fariduddin Q (eds) Sustainable agriculture reviews 41. Springer International Publishing, Cham, pp 1–39

    Google Scholar 

  • Avilala J, Golla N (2019) Antibacterial and antiviral properties of silver nanoparticles synthesized by marine actinomycetes. Int J Pharm Sci Res 10:1223–1228. https://doi.org/10.13040/IJPSR.0975-8232

    Article  CAS  Google Scholar 

  • Ayano H, Kuroda M, Soda S et al (2015) Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of Cd Se nanoparticles. J Biosci Bioeng 119:440–445

    Article  CAS  PubMed  Google Scholar 

  • Azandehi PK, Moghaddam J (2015) Green synthesis, characterization and physiological stability of gold nanoparticles from Stachys lavandulifolia Vahl extract. Particuology 19:22–26

    Article  CAS  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F et al (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  CAS  Google Scholar 

  • Balachandran YL, Girija S, Selvakumar R et al (2013) Differently environment stable bio-silver nanoparticles: study on their optical enhancing and antibacterial properties. PLoS ONE 8(10):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakumaran MD, Ramachandran R, Kalaicheilvan PT (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17. https://doi.org/10.1016/j.micres.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  • Banu A, Rathod V (2011) Synthesis and characterization of silver nanoparticles by Rhizopus stolonier. Int J Biomed Adv Res 2:148–158

    Article  Google Scholar 

  • Barabadi H, Tajani B, Moradi M et al (2019) Penicillium family as emerging nanofactory for biosynthesis of green nanomaterials: a journey into the world of microorganisms. J ClustSci 30:843–856. https://doi.org/10.1007/s10876-019-01554-3

  • Birla SS, Gaikwad SC, Gade AK et al (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013: https://doi.org/10.1155/2013/796018

    Article  CAS  Google Scholar 

  • Costa Silva LP, Oliveira JP, Keijok WJ et al (2017) Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagus fungus Duddingtonia flagans. Int J Nanomed 12:6373–6381. https://doi.org/10.2147/IJN.S137703

    Article  Google Scholar 

  • da Silva Ferreira V, ConzFerreira ME, Lima LMT et al (2017) Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme Microb Technol 97:114–121. https://doi.org/10.1016/j.enzmictec.2016.10.018

    Article  CAS  Google Scholar 

  • Dağlıoğlu Y, Öztürk BY (2019) A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): different methods of pigment change. RendicontiLinceiSciFis E Nat 30:611–621. https://doi.org/10.1007/s12210-019-00822-8

    Article  Google Scholar 

  • Daima HK, Selvakannan PR, Kandjani AE et al (2014) Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6(2):758–765

    Article  CAS  PubMed  Google Scholar 

  • Das B, Dash SK, Mandal D et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876

    Article  CAS  Google Scholar 

  • Divya M, Kiran GS, Hassan S et al (2019) Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. Biocatal Agric Biotechnol 18:1–8. https://doi.org/10.1016/j.bcab.2019.10103

    Article  Google Scholar 

  • Du L, Xu Q, Huang M et al (2015) Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater ChemPhys 160:40–47. https://doi.org/10.1016/j.matchemphys.2015.04.003

    Article  CAS  Google Scholar 

  • Dubey K, Anand BG, Badhwar R et al (2015) Tyrosine-and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids 47(12):2551–2560

    Article  CAS  PubMed  Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28:28. https://doi.org/10.1186/s41938-018-0028-1

    Article  Google Scholar 

  • El-Naggar NE-A, Hussein MH, Shaaban-Dessuuki SA et al (2020) Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep 10:1–19

    Article  CAS  Google Scholar 

  • El-Sayyad GS, Mosallam FM, El-Sayed SS et al (2020) Facile biosynthesis of tellurium dioxide nanoparticles by Streptomyces cyaneus melanin pigment and gamma radiation for repressing some Aspergillus pathogens and bacterial wound cultures. J ClustSci 31:147–159. https://doi.org/10.1007/s10876-019-01629-1

    Article  CAS  Google Scholar 

  • Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H (2020) Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Arch Microbiol 202:1203–1209. https://doi.org/10.1007/s00203-020-01831-0

    Article  CAS  PubMed  Google Scholar 

  • Fatemi M, Mollania N, Momeni-Moghaddam M et al (2018) Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: Characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol 270:1–11. https://doi.org/10.1016/j.jbiotec.2018.01.021

    Article  CAS  PubMed  Google Scholar 

  • Fouda A, Hassan S, Abdo A et al (2019) Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biol Trace Elem Res 195:707–724. https://doi.org/10.1007/s12011-019-01883-4

  • Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9:12944–12967. https://doi.org/10.1039/C8RA10483B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlawat G, Shikha S, Chaddha BS et al (2016) Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb Cell Fact 15:25. https://doi.org/10.1186/s12934-016-0422-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiuță I, Cristea D, Croitoru C et al (2018) Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl Surf Sci 438:66–73

    Article  CAS  Google Scholar 

  • Golhani DK, Khare A, Burra GK et al (2020) Microbes induced biofabrication of nanoparticles: a review. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2020.1731539

    Article  Google Scholar 

  • Grasso G, Zane D, Dragone R (2020) Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials 10:11. https://doi.org/10.3390/nano10010011

    Article  CAS  Google Scholar 

  • Hamad MT (2019) Biosynthesis of silver nanoparticles by fungi and their antibacterial activity. Int J Environ SciTechnol 16:1015–1024. https://doi.org/10.1007/s13762-018-1814-8

    Article  CAS  Google Scholar 

  • Hari S (2020) Biosynthesis of nanoparticles from microorganisms. Res J Pharm Technol 13:2024–2028

    Article  Google Scholar 

  • Hassan SE-D, Fouda A, Radwan AA et al (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24:377–393. https://doi.org/10.1007/s00775-019-01654-5

    Article  CAS  PubMed  Google Scholar 

  • Hulikere MM, Joshi CG (2019) Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides. Process Biochem 82:199–204. https://doi.org/10.1016/j.procbio.2019.04.011

    Article  CAS  Google Scholar 

  • Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumoral activities. Beni Suef Univer J Basic ApplSci 4:225–231. https://doi.org/10.1016/j.bjbas.2015.07.004

    Article  Google Scholar 

  • Jain N, Bhargava A, Majumdar S et al (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  CAS  PubMed  Google Scholar 

  • Jalal M, Ansari MA, Alzohairy MA et al (2018) Biosynthesis of silver nanoparticles from oropharyngeal Candidaglabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 8:1–12. https://doi.org/10.3390/nano8080586

    Article  CAS  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D et al (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1):150–153

    Article  CAS  PubMed  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B (2011) Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity. J Nanotechnol 2011: https://doi.org/10.1155/2011/152970

    Article  CAS  Google Scholar 

  • Kobayashi M, Tomita S, Sawada K et al (2012) Chiral meta-molecules consisting of gold nanoparticles and genetically engineered tobacco mosaic virus. Opt Express 20:24856–24863

    Article  CAS  PubMed  Google Scholar 

  • Kunoh T, Takeda M, Matsumoto S et al (2018) Green synthesis of gold nanoparticles coupled with nucleic acid oxidation. ACS Sustain Chem Eng 6:364–373

    Article  CAS  Google Scholar 

  • Lachance MA (2016) Paraphyly and (yeast) classification. Int J Syst Evol Microbiol 66:4924–4929

    Article  PubMed  Google Scholar 

  • Le DH, Lee KL, Shukla S et al (2017) Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 9:2348–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Hu Q, Zeng J et al (2011) Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. J Environ Sci 23(1):108–111

    Article  CAS  Google Scholar 

  • Lv Q, Zhang B, Xing X et al (2018) Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. J Hazard Mater 347:141–149

    Article  CAS  PubMed  Google Scholar 

  • Mahanty S, Bakshi M, Ghosh S et al (2019) Green synthesis of iron oxide nanoparticles mediated by filamentous fungi isolated from Sundarban Mangrove ecosystem, India. BioNanoSci 9:637–651. https://doi.org/10.1007/s12668-019-00644-w

    Article  Google Scholar 

  • Mishra V, Arya A, Chundawat TS (2020) High catalytic activity of Pd nanoparticles synthesized from green alga Chlorella vulgaris in buchwald-hartwig synthesis of N-aryl piperazines. Curr Organo Catalysis 7:23–33

    Article  CAS  Google Scholar 

  • Murphy CJ (2002) Materials science: nanocubes and nanoboxes. Science 298:2139–2141

    Article  CAS  PubMed  Google Scholar 

  • Nadaroğlu H, Güngör AA, İnce S (2017) Synthesis of nanoparticles by green synthesis method. J Innov Res Rev 1(1):6–9

    Google Scholar 

  • Nam KT, Kim D-W, Yoo PJ et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Google Scholar 

  • Nangia Y, Wangoo N, Goyal N et al (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8:39. https://doi.org/10.1186/1475-2859-8-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak RR, Pradhan N, Behera D et al (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129–3137. https://doi.org/10.1007/s11051-010-0208-8

    Article  CAS  Google Scholar 

  • Noman M, Shahid M, Ahmed T et al (2020) Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ Pollut 257:1–34. https://doi.org/10.1016/j.envpol.2019.113514

    Article  CAS  Google Scholar 

  • Noshad A, Hetherington C, Iqbal M (2019) Impact of AgNPs on seed germination and seedling growth: A focus study on its antibacterial potential against Clavibacter michiganensis subsp. michiganensis infection in Solanum lycopersicum. J Nanomaterials 2019: ID 6316094. https://doi.org/10.1155/2019/6316094

  • Noshad A, Iqbal M, Hetherington C, Wahab H (2020) Biogenic AgNPs—A Nano Weapon against Bacterial Canker of Tomato (BCT). Adv Agric 2020:1–10. https://doi.org/10.1155/2020/9630785

    Article  Google Scholar 

  • Omar R, Afreen S, Talreja N et al (2019) Impact of nanomaterials on the microbial system. In: Prasad R (ed) Microbial nanobionics. Nanotechnology in the Life Sciences, Springer, Cham, pp 141–158

    Chapter  Google Scholar 

  • Phanjom P, Ahmed G (2017) Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effects. Adv Nat Sci Nanosci Nanotechnol 8:1–13. https://doi.org/10.1088/2043-6254/aa92bc

    Article  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR et al (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74:309–316

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Rajeshkumar S (2018) Synthesis of zinc oxide nanoparticles using algal formulation (Padina tetrastromatica and Turbinaria conoides) and their antibacterial activity against fish pathogens. Res J Biotechnol 13:15–19

    CAS  Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY et al (2010) Bacterial kinetics- controlled shape- directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27:714–719

    Article  PubMed  CAS  Google Scholar 

  • Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39

    Article  CAS  PubMed  Google Scholar 

  • Ranjitha VR, Ravishankar VR (2018) Extracellular synthesis of selenium nanoparticles from an actinomycetes Streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line. Pharm Nanotechnol 6:61–68

    Article  CAS  PubMed  Google Scholar 

  • Rao PV, Gan SH (2015) Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab 16:371–375

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JJK, da Silva Porto PS, Pereira RD et al (2020) Green synthesis of nanomaterials: most cited papers and research trends. Res Soc Dev 9:1–20. https://doi.org/10.33448/rsd-v9i1.1593

  • Roy A, Bulut O, Some S et al (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salaam A, Adebayo-Tayo BC, Ajibade A (2020) Phycosynthesis of silver nanoparticles using Chlorella vulgaris metabolites: its antibacterial, anti-biofilm and in-vitro cytotoxicity potential and effect of optimized conditions on biosynthesis: Chlorella vulgaris silver nanoparticles. Afr J Biomed Res 23:17–23

    Google Scholar 

  • Salah NS, Muhsen TA, Risan MH (2020) Antifungal activity of silver nanoparticles using Penicillium chrysogenum extract against the formation of biofilm for candida glabrata. Indian J Forensic Med Toxicol 14:306–311

    Google Scholar 

  • Salem SS, Fouda MM, Fouda A et al (2020) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J Clust Sci. https://doi.org/10.1007/s10876-020-01794-8

    Article  Google Scholar 

  • San Diego KD, Alindayu JIA, Baculi RQ (2020) Biosynthesis of gold nanoparticles by bacteria from hyperalkaline spring and evaluation of their inhibitory activity against pyocyanin production. J Microbiol Biotechnol Food Sci 9:781–787

    Google Scholar 

  • Sangappa M, Thiagarajan P (2012) Mycobiosynthesis and characterization of silver nanoparticles from Aspergillus niger: a soil fungal isolate. Int J Life Sci Biotechnol Pharma Res 1:282–289

    CAS  Google Scholar 

  • Saxena J, Sharma PK, Sharma MM et al (2016) Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus 5:861. https://doi.org/10.1186/s40064-016-2558-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvakannan PR, Ramanathan R, Plowman BJ et al (2013) Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates. Phys Chem Chem Phys 15(31):12920–12929

    Article  CAS  PubMed  Google Scholar 

  • Shahzad A, Saeed H, Iqtedar M (2019) Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. J Nanomater 2019:5168698. https://doi.org/10.1155/2019/5168698

    Article  CAS  Google Scholar 

  • Shankar PD, Shobana S, Karuppusamy I et al (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme Microb Tech 95:28–44. https://doi.org/10.1016/j.enzmictec.2016.10.015

    Article  CAS  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S et al (2014) Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv Colloid Interface Sci 209:40–48. https://doi.org/10.1016/j.cis.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A, Rao RA (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16(1):1–14. https://doi.org/10.1186/s12951-018-0334-5

    Article  CAS  Google Scholar 

  • Sidkey NM, Arafa RA, Moustafa YM et al (2020) Biosynthesis of Mg and Mn intracellular nanoparticles via extremo-Metallotolerant Pseudomonas stutzeri, B4 Mg/W and Fusarium nygamai, F4 Mn/S. J Microbiol Biotechnol Food Sci 9:1181–1187. https://doi.org/10.15414/jmbfs.2017.6.5.1181-1187

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim KH et al (2018) Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nano biotechnol 16:1–84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  • Singh OV (2015) Bio-nanoparticles: biosynthesis and sustainable biotechnological implications. Wiley, New York

    Book  Google Scholar 

  • Singh P, Kim Y-J, Zhang D et al (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Bio Technol 34:588–599

    Article  CAS  Google Scholar 

  • Singh VK, Singh AK (2019) Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management. In: Kumar A, Singh AK, Choudhary KK (eds) Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Wood head Publishing, pp 55–73

    Google Scholar 

  • Sintubin L, Windt WD, Dick J et al (2009) Lactic acid bacteria as reducing and capping agent for the fast and effcient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749. https://doi.org/10.1007/s00253-009-2032-6

    Article  CAS  PubMed  Google Scholar 

  • Skalickova S, Baron M, Sochor J (2017) Nanoparticles biosynthesized by yeast: A review of their application. KVASNÝ PR\UUMYSL 63:290–292 https://doi.org/10.18832/kp201727

  • Sowbarnika R, Anhuradha S, Preetha B (2018) Enhanced antimicrobial effect of yeast mediated silver nanoparticles synthesized from baker’s yeast. Int J Nanosci Nanotechnol 14:33–42

    Google Scholar 

  • Sriramulu M, Sumathi S (2018) Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Adv Nat Sci Nanosci Nanotechnol 9:1–6. https://doi.org/10.1088/2043-6254/aac506

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W et al (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Tsekhmistrenko S, Bityutskii V, Tsekhmistrenko O et al (2020) Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity 28(1):9–17. https://doi.org/10.15421/012002

    Article  Google Scholar 

  • Vairavel M, Devaraj E, Shanmugam R (2020) An eco-friendly synthesis of Enterococcus sp.–mediated gold nanoparticle induces cytotoxicity in human colorectal cancer cells. Environ SciPollut Res 27:8166–8175

    Article  CAS  Google Scholar 

  • Velusamy P, Kumar GV, Jeyanthi V et al (2016) Bio-Inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voeikova TA, Zhuravliova OA, Bulushova NV et al (2017) The protein corona of silver-sulfide nanoparticles obtained using gram-negative and-positive bacteria. Mol Genet Microbiol Virol 32:204–211

    Article  Google Scholar 

  • Wadhwani SA, Gorain M, Banerjee P et al (2017) Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomedicine 12:6841–6855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wypij M, Czarnecka J, Świecimska M et al (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34:23–34. https://doi.org/10.1007/s11274-017-2406-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue B, He D, Gao S et al (2016) Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomed 11:1899–1906. https://doi.org/10.2147/IJN.S98339

    Article  CAS  Google Scholar 

  • Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ (2020) Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 89:208–219. https://doi.org/10.1016/j.procbio.2019.10.027

    Article  CAS  Google Scholar 

  • Yin Y, Yang X, Hu L et al (2016) Superoxide-mediated extracellular biosynthesis of silver nanoparticles by the fungus Fusarium oxysporum. Environ Sci Technol Lett 3(4):160–165

    Article  CAS  Google Scholar 

  • Yu J, Xu D, Guan HN et al (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112

    Article  CAS  Google Scholar 

  • Yusof HM, Mohamad R, Zaidan UH (2020) Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Factories 19:1–17. https://doi.org/10.1186/s12934-020-1279-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maysaa T. Alloosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alloosh, M.T., Saleh, M.M., Alnaddaf, L.M., Almuhammady, A.K., Salem, K.F.M., Al-Khayri, J.M. (2021). Biosynthesis and Characterization of Microorganisms-Derived Nanomaterials. In: Al-Khayri, J.M., Ansari, M.I., Singh, A.K. (eds) Nanobiotechnology . Springer, Cham. https://doi.org/10.1007/978-3-030-73606-4_10

Download citation

Publish with us

Policies and ethics