Skip to main content

Regulation of Tumor Suppressor Par-4 by Ceramide

  • Chapter
  • First Online:
Tumor Suppressor Par-4

Abstract

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic protein that selectively induces apoptosis in cancer cells, thereby exerting prominent tumor-suppressing functions. Ceramides are important bioactive lipids belonging to the sphingolipid family. Both Par-4 and ceramide are critical regulators of cellular responses to acute stressors and has been clearly established as a key player in the execution of cell death. Though Par-4 and ceramide act as an apparent collaborator of cell-fate decisions, the relationship between these molecules is very complex, and mechanisms underlying their regulation are diverse and not fully characterized. In this chapter, we portray the role and mechanisms of action of Par-4 and ceramide in apoptosis and autophagy. Specifically, we are elaborating on the central role of Par-4 in ceramide-induced cell death signaling. Understanding the Par-4-ceramide connection will not only have profound importance to the understanding of programmed cell death pathways, but also will have an impact on interventions of cancer therapy and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, Pant D et al (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24(1):30–44. https://doi.org/10.1016/j.ccr.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  2. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A (2008) Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68(5):1485–1494. https://doi.org/10.1158/0008-5472.CAN-07-0562

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356. https://doi.org/10.1146/annurev-cellbio-100913-013226

    Article  CAS  PubMed  Google Scholar 

  4. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182(4):685–701. https://doi.org/10.1083/jcb.200803137

    Article  PubMed  PubMed Central  Google Scholar 

  5. Babiychuk EB, Atanassoff AP, Monastyrskaya K, Brandenberger C, Studer D, Allemann C et al (2011) The targeting of plasmalemmal ceramide to mitochondria during apoptosis. PLoS One 6(8):e23706. https://doi.org/10.1371/journal.pone.0023706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barradas M, Monjas A, Diaz-Meco MT, Serrano M, Moscat J (1999) The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO J 18(22):6362–6369. https://doi.org/10.1093/emboj/18.22.6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M et al (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  CAS  PubMed  Google Scholar 

  8. Bergmann M, Kukoc-Zivojnov N, Chow KU, Trepohl B, Hoelzer D, Weidmann E et al (2004) Prostate apoptosis response gene-4 sensitizes neoplastic lymphocytes to CD95-induced apoptosis. Ann Hematol 83(10):646–653. https://doi.org/10.1007/s00277-004-0922-3

    Article  CAS  PubMed  Google Scholar 

  9. Bieberich E, MacKinnon S, Silva J, Yu RK (2001) Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J Biol Chem 276(48):44396–44404. https://doi.org/10.1074/jbc.M107239200

    Article  CAS  PubMed  Google Scholar 

  10. Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG (2003) Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 162(3):469–479. https://doi.org/10.1083/jcb.200212067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167(4):723–734. https://doi.org/10.1083/jcb.200405144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Birbes H, El Bawab S, Hannun YA, Obeid LM (2001) Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J 15(14):2669–2679. https://doi.org/10.1096/fj.01-0539com

    Article  CAS  PubMed  Google Scholar 

  13. Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386(Pt 3):445–451. https://doi.org/10.1042/BJ20041627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boehrer S, Chow KU, Beske F, Kukoc-Zivojnov N, Puccetti E, Ruthardt M et al (2002) In lymphatic cells par-4 sensitizes to apoptosis by down-regulating bcl-2 and promoting disruption of mitochondrial membrane potential and caspase activation. Cancer Res 62(6):1768–1775

    CAS  PubMed  Google Scholar 

  15. Boehrer S, Kukoc-Zivojnov N, Nowak D, Bergmann M, Baum C, Puccetti E et al (2004) Upon drug-induced apoptosis expression of prostate-apoptosis-response-gene-4 promotes cleavage of caspase-8, bid and mitochondrial release of cytochrome c. Hematology 9(5–6):425–431. https://doi.org/10.1080/10245330400010604

    Article  CAS  PubMed  Google Scholar 

  16. Boehrer S, Nowak D, Puccetti E, Ruthardt M, Sattler N, Trepohl B et al (2006) Prostate-apoptosis-response-gene-4 increases sensitivity to TRAIL-induced apoptosis. Leuk Res 30(5):597–605. https://doi.org/10.1016/j.leukres.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  17. Boosen M, Vetterkind S, Koplin A, Illenberger S, Preuss U (2005) Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis. Exp Cell Res 311(2):177–191. https://doi.org/10.1016/j.yexcr.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  18. Boosen M, Vetterkind S, Kubicek J, Scheidtmann KH, Illenberger S, Preuss U (2009) Par-4 is an essential downstream target of DAP-like kinase (Dlk) in Dlk/Par-4-mediated apoptosis. Mol Biol Cell 20(18):4010–4020. https://doi.org/10.1091/mbc.E09-02-0173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burikhanov R, Zhao Y, Goswami A, Qiu S, Schwarze SR, Rangnekar VM (2009) The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138(2):377–388. https://doi.org/10.1016/j.cell.2009.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M et al (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17(8):1595–1607. https://doi.org/10.1093/carcin/17.8.1595

    Article  CAS  PubMed  Google Scholar 

  21. Castro BM, Prieto M, Silva LC (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 54:53–67. https://doi.org/10.1016/j.plipres.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  22. Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM (2001) Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 61(19):7255–7263

    CAS  PubMed  Google Scholar 

  23. Chaudhry P, Singh M, Parent S, Asselin E (2012) Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation. Mol Cell Biol 32(4):826–839. https://doi.org/10.1128/MCB.06321-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheema SK, Mishra SK, Rangnekar VM, Tari AM, Kumar R, Lopez-Berestein G (2003) Par-4 transcriptionally regulates Bcl-2 through a WT1-binding site on the bcl-2 promoter. J Biol Chem 278(22):19995–20005. https://doi.org/10.1074/jbc.M205865200

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Sahasrabuddhe AA, Szankasi P, Chung F, Basrur V, Rangnekar VM et al (2014) Fbxo45-mediated degradation of the tumor-suppressor Par-4 regulates cancer cell survival. Cell Death Differ 21(10):1535–1545. https://doi.org/10.1038/cdd.2014.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chendil D, Das A, Dey S, Mohiuddin M, Ahmed MM (2002) Par-4, a pro-apoptotic gene, inhibits radiation-induced NF kappa B activity and Bcl-2 expression leading to induction of radiosensitivity in human prostate cancer cells PC-3. Cancer Biol Ther 1(2):152–160. https://doi.org/10.4161/cbt.61

    Article  CAS  PubMed  Google Scholar 

  27. Cook J, Krishnan S, Ananth S, Sells SF, Shi Y, Walther MM et al (1999) Decreased expression of the pro-apoptotic protein Par-4 in renal cell carcinoma. Oncogene 18(5):1205–1208. https://doi.org/10.1038/sj.onc.1202416

    Article  CAS  PubMed  Google Scholar 

  28. Dadsena S, Bockelmann S, Mina JGM, Hassan DG, Korneev S, Razzera G et al (2019) Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat Commun 10(1):1832. https://doi.org/10.1038/s41467-019-09654-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64(12):4286–4293. https://doi.org/10.1158/0008-5472.CAN-03-3084

    Article  CAS  PubMed  Google Scholar 

  30. Damrauer JS, Phelps SN, Amuchastegui K, Lupo R, Mabe NW, Walens A et al (2018) Foxo-dependent Par-4 Upregulation prevents long-term survival of residual cells following PI3K-Akt inhibition. Mol Cancer Res 16(4):599–609. https://doi.org/10.1158/1541-7786.MCR-17-0492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dany M, Gencer S, Nganga R, Thomas RJ, Oleinik N, Baron KD et al (2016) Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 128(15):1944–1958. https://doi.org/10.1182/blood-2016-04-708750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C (2016) Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis 7:e2111. https://doi.org/10.1038/cddis.2015.403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Thonel A, Hazoume A, Kochin V, Isoniemi K, Jego G, Fourmaux E et al (2014) Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell Death Dis 5:e1016. https://doi.org/10.1038/cddis.2013.532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deroyer C, Renert AF, Merville MP, Fillet M (2014) New role for EMD (emerin), a key inner nuclear membrane protein, as an enhancer of autophagosome formation in the C16-ceramide autophagy pathway. Autophagy 10(7):1229–1240. https://doi.org/10.4161/auto.28777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Diaz-Meco MT, Lallena MJ, Monjas A, Frutos S, Moscat J (1999) Inactivation of the inhibitory kappaB protein kinase/nuclear factor kappaB pathway by Par-4 expression potentiates tumor necrosis factor alpha-induced apoptosis. J Biol Chem 274(28):19606–19612. https://doi.org/10.1074/jbc.274.28.19606

    Article  CAS  PubMed  Google Scholar 

  36. Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25(41):5612–5625. https://doi.org/10.1038/sj.onc.1209568

    Article  CAS  PubMed  Google Scholar 

  37. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461. https://doi.org/10.1126/science.1196371

    Article  CAS  PubMed  Google Scholar 

  38. El-Guendy N, Zhao Y, Gurumurthy S, Burikhanov R, Rangnekar VM (2003) Identification of a unique core domain of par-4 sufficient for selective apoptosis induction in cancer cells. Mol Cell Biol 23(16):5516–5525. https://doi.org/10.1128/mcb.23.16.5516-5525.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z (2006) Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 281(47):36303–36316. https://doi.org/10.1074/jbc.M607031200

    Article  CAS  PubMed  Google Scholar 

  40. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758. https://doi.org/10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol 20(6):355–362. https://doi.org/10.1016/j.tcb.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galadari S, Wu BX, Mao C, Roddy P, El Bawab S, Hannun YA (2006) Identification of a novel amidase motif in neutral ceramidase. Biochem J 393(Pt 3):687–695. https://doi.org/10.1042/BJ20050682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galadari S, Rahman A, Pallichankandy S, Galadari A, Thayyullathil F (2013) Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 12:98. https://doi.org/10.1186/1476-511X-12-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2015) Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20(5):689–711. https://doi.org/10.1007/s10495-015-1109-1

    Article  CAS  PubMed  Google Scholar 

  45. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164. https://doi.org/10.1016/j.freeradbiomed.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  46. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8(2):78–91. https://doi.org/10.2174/156652408783769616

    Article  CAS  PubMed  Google Scholar 

  47. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F et al (2017) Molecular definitions of autophagy and related processes. EMBO J 36(13):1811–1836. https://doi.org/10.15252/embj.201796697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., & Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18), 12297–12305, doi:https://doi.org/10.1074/jbc.M900573200

  49. Garcia-Cao I, Duran A, Collado M, Carrascosa MJ, Martin-Caballero J, Flores JM et al (2005) Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep 6(6):577–583. https://doi.org/10.1038/sj.embor.7400421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez P, Mader I, Tchoghandjian A, Enzenmuller S, Cristofanon S, Basit F et al (2012) Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ 19(8):1337–1346. https://doi.org/10.1038/cdd.2012.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goswami A, Burikhanov R, de Thonel A, Fujita N, Goswami M, Zhao Y et al (2005) Binding and phosphorylation of par-4 by akt is essential for cancer cell survival. Mol Cell 20(1):33–44. https://doi.org/10.1016/j.molcel.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  53. Goswami A, Qiu S, Dexheimer TS, Ranganathan P, Burikhanov R, Pommier Y et al (2008) Par-4 binds to topoisomerase 1 and attenuates its DNA relaxation activity. Cancer Res 68(15):6190–6198. https://doi.org/10.1158/0008-5472.CAN-08-0831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16):2891–2906. https://doi.org/10.1038/sj.onc.1207521

    Article  CAS  PubMed  Google Scholar 

  55. Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22(35):5457–5470. https://doi.org/10.1038/sj.onc.1206540

    Article  CAS  PubMed  Google Scholar 

  56. Green DR (2019) The coming decade of cell death research: five riddles. Cell 177(5):1094–1107. https://doi.org/10.1016/j.cell.2019.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gump JM, Staskiewicz L, Morgan MJ, Bamberg A, Riches DW, Thorburn A (2014) Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol 16(1):47–54. https://doi.org/10.1038/ncb2886

    Article  CAS  PubMed  Google Scholar 

  58. Guo Q, Xie J (2004) AATF inhibits aberrant production of amyloid beta peptide 1-42 by interacting directly with Par-4. J Biol Chem 279(6):4596–4603. https://doi.org/10.1074/jbc.M309811200

    Article  CAS  PubMed  Google Scholar 

  59. Guo H, Treude F, Kramer OH, Luscher B, Hartkamp J (2019) PAR-4 overcomes chemo-resistance in breast cancer cells by antagonizing cIAP1. Sci Rep 9(1):8755. https://doi.org/10.1038/s41598-019-45209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gurumurthy S, Goswami A, Vasudevan KM, Rangnekar VM (2005) Phosphorylation of Par-4 by protein kinase a is critical for apoptosis. Mol Cell Biol 25(3):1146–1161. https://doi.org/10.1128/MCB.25.3.1146-1161.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Han JY, Lim YJ, Choi JA, Lee JH, Jo SH, Oh SM et al (2016) The role of prostate apoptosis Response-4 (Par-4) in Mycobacterium tuberculosis infected macrophages. Sci Rep 6:32079. https://doi.org/10.1038/srep32079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hannun YA, Luberto C (2000) Ceramide in the eukaryotic stress response. Trends Cell Biol 10(2):73–80. https://doi.org/10.1016/s0962-8924(99)01694-3

    Article  CAS  PubMed  Google Scholar 

  63. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  64. Hannun YA, Obeid LM (2018) Author correction: sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19(10):673. https://doi.org/10.1038/s41580-018-0046-6

    Article  CAS  PubMed  Google Scholar 

  65. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437. https://doi.org/10.1038/ncb1991

    Article  PubMed  Google Scholar 

  66. Hebbar N, Burikhanov R, Shukla N, Qiu S, Zhao Y, Elenitoba-Johnson KSJ et al (2017) A naturally generated decoy of the prostate apoptosis Response-4 protein overcomes therapy resistance in Tumors. Cancer Res 77(15):4039–4050. https://doi.org/10.1158/0008-5472.CAN-16-1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776. https://doi.org/10.1038/35037710

    Article  CAS  PubMed  Google Scholar 

  68. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991. https://doi.org/10.1091/mbc.E08-12-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361(16):1570–1583. https://doi.org/10.1056/NEJMra0901217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425–1428. https://doi.org/10.1080/15548627.2016.1187366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244. https://doi.org/10.1146/annurev-biochem-061516-044820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408(6811):488–492. https://doi.org/10.1038/35044114

    Article  CAS  PubMed  Google Scholar 

  73. Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A et al (2001) Autophagosome requires specific early sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12(11):3690–3702. https://doi.org/10.1091/mbc.12.11.3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275(40):31199–31203. https://doi.org/10.1074/jbc.C000405200

    Article  CAS  PubMed  Google Scholar 

  75. Johnson KR, Johnson KY, Becker KP, Bielawski J, Mao C, Obeid LM (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J Biol Chem 278(36):34541–34547. https://doi.org/10.1074/jbc.M301741200

    Article  CAS  PubMed  Google Scholar 

  76. Johnstone RW, See RH, Sells SF, Wang J, Muthukkumar S, Englert C et al (1996) A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol Cell Biol 16(12):6945–6956. https://doi.org/10.1128/mcb.16.12.6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnstone RW, Tommerup N, Hansen C, Vissing H, Shi Y (1998) Mapping of the human PAWR (par-4) gene to chromosome 12q21. Genomics 53(2):241–243. https://doi.org/10.1006/geno.1998.5494

    Article  CAS  PubMed  Google Scholar 

  78. Joshi J, Fernandez-Marcos PJ, Galvez A, Amanchy R, Linares JF, Duran A et al (2008) Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis. EMBO J 27(16):2181–2193. https://doi.org/10.1038/emboj.2008.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Kim SS et al (2009) Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol 217(5):702–706. https://doi.org/10.1002/path.2509

    Article  CAS  PubMed  Google Scholar 

  80. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63(9):2103–2108

    CAS  PubMed  Google Scholar 

  81. Kilbride SM, Prehn JH (2013) Central roles of apoptotic proteins in mitochondrial function. Oncogene 32(22):2703–2711. https://doi.org/10.1038/onc.2012.348

    Article  CAS  PubMed  Google Scholar 

  82. Kim HJ, Oh JE, Kim SW, Chun YJ, Kim MY (2008) Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via inhibition of Akt in HL-60 cells. Cancer Lett 260(1–2):88–95. https://doi.org/10.1016/j.canlet.2007.10.030

    Article  CAS  PubMed  Google Scholar 

  83. Kline CL, Shanmugavelandy SS, Kester M, Irby RB (2009) Delivery of PAR-4 plasmid in vivo via nanoliposomes sensitizes colon tumor cells subcutaneously implanted into nude mice to 5-FU. Cancer Biol Ther 8(19):1831–1837. https://doi.org/10.4161/cbt.8.19.9592

    Article  CAS  PubMed  Google Scholar 

  84. Kogel D, Reimertz C, Mech P, Poppe M, Fruhwald MC, Engemann H et al (2001) Dlk/ZIP kinase-induced apoptosis in human medulloblastoma cells: requirement of the mitochondrial apoptosis pathway. Br J Cancer 85(11):1801–1808. https://doi.org/10.1054/bjoc.2001.2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kroemer G (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3(6):614–620. https://doi.org/10.1038/nm0697-614

    Article  CAS  PubMed  Google Scholar 

  86. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477. https://doi.org/10.1016/s1534-5807(04)00099-1

    Article  CAS  PubMed  Google Scholar 

  87. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206. https://doi.org/10.1038/onc.2008.297

    Article  CAS  PubMed  Google Scholar 

  88. Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF et al (2009) The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene 28(6):886–898. https://doi.org/10.1038/onc.2008.441

    Article  CAS  PubMed  Google Scholar 

  89. Lin CF, Chen CL, Chiang CW, Jan MS, Huang WC, Lin YS (2007) GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J Cell Sci 120(Pt 16):2935–2943. https://doi.org/10.1242/jcs.03473

    Article  CAS  PubMed  Google Scholar 

  90. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22(53):8568–8580. https://doi.org/10.1038/sj.onc.1207101

    Article  CAS  PubMed  Google Scholar 

  91. Liu J, Debnath J (2016) The evolving, multifaceted roles of autophagy in Cancer. Adv Cancer Res 130:1–53. https://doi.org/10.1016/bs.acr.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  92. Lu C, Chen JQ, Zhou GP, Wu SH, Guan YF, Yuan CS (2008) Multimolecular complex of Par-4 and E2F1 binding to Smac promoter contributes to glutamate-induced apoptosis in human- bone mesenchymal stem cells. Nucleic Acids Res 36(15):5021–5032. https://doi.org/10.1093/nar/gkn426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61(12):1439–1454. https://doi.org/10.1007/s00018-004-4012-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075. https://doi.org/10.1016/j.cell.2009.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139. https://doi.org/10.1016/j.ceb.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  96. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  97. Morales MC, Perez-Yarza G, Rementeria NN, Boyano MD, Apraiz A, Gomez-Munoz A et al (2007) 4-HPR-mediated leukemia cell cytotoxicity is triggered by ceramide-induced mitochondrial oxidative stress and is regulated downstream by Bcl-2. Free Radic Res 41(5):591–601. https://doi.org/10.1080/10715760701218558

    Article  CAS  PubMed  Google Scholar 

  98. Moreno-Bueno G, Fernandez-Marcos PJ, Collado M, Tendero MJ, Rodriguez-Pinilla SM, Garcia-Cao I et al (2007) Inactivation of the candidate tumor suppressor par-4 in endometrial cancer. Cancer Res 67(5):1927–1934. https://doi.org/10.1158/0008-5472.CAN-06-2687

    Article  CAS  PubMed  Google Scholar 

  99. Moscat J, Diaz-Meco MT, Wooten MW (2009) Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex. Cell Death Differ 16(11):1426–1437. https://doi.org/10.1038/cdd.2009.119

    Article  CAS  PubMed  Google Scholar 

  100. Nagai MA, Gerhard R, Salaorni S, Fregnani JH, Nonogaki S, Netto MM et al (2010) Down-regulation of the candidate tumor suppressor gene PAR-4 is associated with poor prognosis in breast cancer. Int J Oncol 37(1):41–49. https://doi.org/10.3892/ijo_00000651

    Article  CAS  PubMed  Google Scholar 

  101. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130(1):165–178. https://doi.org/10.1016/j.cell.2007.05.021

    Article  CAS  PubMed  Google Scholar 

  102. Obara K, Sekito T, Niimi K, Ohsumi Y (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283(35):23972–23980. https://doi.org/10.1074/jbc.M803180200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259(5102):1769–1771. https://doi.org/10.1126/science.8456305

    Article  CAS  PubMed  Google Scholar 

  104. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3):211–216. https://doi.org/10.1038/35056522

    Article  CAS  PubMed  Google Scholar 

  105. Page G, Kogel D, Rangnekar V, Scheidtmann KH (1999) Interaction partners of Dlk/ZIP kinase: co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene 18(51):7265–7273. https://doi.org/10.1038/sj.onc.1203170

    Article  CAS  PubMed  Google Scholar 

  106. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E et al (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61(2):439–444

    CAS  PubMed  Google Scholar 

  107. Pallichankandy S, Rahman A, Thayyullathil F, Galadari S (2015) ROS-dependent activation of autophagy is a critical mechanism for the induction of anti-glioma effect of sanguinarine. Free Radic Biol Med 89:708–720. https://doi.org/10.1016/j.freeradbiomed.2015.10.404

    Article  CAS  PubMed  Google Scholar 

  108. Park SK, Nguyen MD, Fischer A, Luke MP, Affarel B, Dieffenbach PB et al (2005) Par-4 links dopamine signaling and depression. Cell 122(2):275–287. https://doi.org/10.1016/j.cell.2005.05.031

    Article  CAS  PubMed  Google Scholar 

  109. Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585(2–3):114–125. https://doi.org/10.1016/s1388-1981(02)00331-1

    Article  CAS  PubMed  Google Scholar 

  110. Pooladanda V, Bandi S, Mondi SR, Gottumukkala KM, Godugu C (2018) Nimbolide epigenetically regulates autophagy and apoptosis in breast cancer. Toxicol In Vitro 51:114–128. https://doi.org/10.1016/j.tiv.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  111. Pozuelo-Rubio M (2011) Regulation of autophagic activity by 14-3-3zeta proteins associated with class III phosphatidylinositol-3-kinase. Cell Death Differ 18(3):479–492. https://doi.org/10.1038/cdd.2010.118

    Article  CAS  PubMed  Google Scholar 

  112. Raas-Rothschild A, Pankova-Kholmyansky I, Kacher Y, Futerman AH (2004) Glycosphingolipidoses: beyond the enzymatic defect. Glycoconj J 21(6):295–304. https://doi.org/10.1023/B:GLYC.0000046272.38480.ef

    Article  CAS  PubMed  Google Scholar 

  113. Rahman A, Pallichankandy S, Thayyullathil F, Galadari S (2019) Critical role of H2O2 in mediating sanguinarine-induced apoptosis in prostate cancer cells via facilitating ceramide generation, ERK1/2 phosphorylation, and Par-4 cleavage. Free Radic Biol Med 134:527–544. https://doi.org/10.1016/j.freeradbiomed.2019.01.039

    Article  CAS  PubMed  Google Scholar 

  114. Rasool RU, Nayak D, Chakraborty S, Katoch A, Faheem MM, Amin H et al (2016) A journey beyond apoptosis: new enigma of controlling metastasis by pro-apoptotic Par-4. Clin Exp Metastasis 33(8):757–764. https://doi.org/10.1007/s10585-016-9819-5

    Article  CAS  PubMed  Google Scholar 

  115. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8):747–757. https://doi.org/10.1038/ncb2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Roussigne M, Cayrol C, Clouaire T, Amalric F, Girard JP (2003) THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene 22(16):2432–2442. https://doi.org/10.1038/sj.onc.1206271

    Article  CAS  PubMed  Google Scholar 

  117. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874. https://doi.org/10.1038/sj.onc.1207523

    Article  CAS  PubMed  Google Scholar 

  118. Santos RVC, de Sena WLB, Dos Santos FA, da Silva Filho AF, da Rocha Pitta MG, da Rocha Pitta MG et al (2019) Potential therapeutic agents against Par-4 target for Cancer treatment: where are we going? Curr Drug Targets 20(6):635–654. https://doi.org/10.2174/1389450120666181126122440

    Article  CAS  PubMed  Google Scholar 

  119. Sanvicens N, Cotter TG (2006) Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem 98(5):1432–1444. https://doi.org/10.1111/j.1471-4159.2006.03977.x

    Article  CAS  PubMed  Google Scholar 

  120. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A et al (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279(18):18384–18391. https://doi.org/10.1074/jbc.M313561200

    Article  CAS  PubMed  Google Scholar 

  121. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329. https://doi.org/10.1038/cdd.2008.51

    Article  PubMed  Google Scholar 

  122. Segui B, Cuvillier O, Adam-Klages S, Garcia V, Malagarie-Cazenave S, Leveque S et al (2001) Involvement of FAN in TNF-induced apoptosis. J Clin Invest 108(1):143–151. https://doi.org/10.1172/JCI11498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA et al (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ 5(4):457–466

    CAS  PubMed  Google Scholar 

  124. Sells SF, Han SS, Muthukkumar S, Maddiwar N, Johnstone R, Boghaert E et al (1997) Expression and function of the leucine zipper protein Par-4 in apoptosis. Mol Cell Biol 17(7):3823–3832. https://doi.org/10.1128/mcb.17.7.3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP et al (2012) Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8(10):831–838. https://doi.org/10.1038/nchembio.1059

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sharma AK, Kline CL, Berg A, Amin S, Irby RB (2011) The Akt inhibitor ISC-4 activates prostate apoptosis response protein-4 and reduces colon tumor growth in a nude mouse model. Clin Cancer Res 17(13):4474–4483. https://doi.org/10.1158/1078-0432.CCR-10-2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shen W, Henry AG, Paumier KL, Li L, Mou K, Dunlop J et al (2014) Inhibition of glucosylceramide synthase stimulates autophagy flux in neurons. J Neurochem 129(5):884–894. https://doi.org/10.1111/jnc.12672

    Article  CAS  PubMed  Google Scholar 

  128. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6(12):1221–1228. https://doi.org/10.1038/ncb1192

    Article  CAS  PubMed  Google Scholar 

  129. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16(6):495–501. https://doi.org/10.1038/ncb2979

    Article  CAS  PubMed  Google Scholar 

  130. Subburayan K, Thayyullathil F, Pallichankandy S, Rahman A, Galadari S (2018) Par-4-dependent p53 up-regulation plays a critical role in thymoquinone-induced cellular senescence in human malignant glioma cells. Cancer Lett 426:80–97. https://doi.org/10.1016/j.canlet.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  131. Sui Y, Yao H, Li S, Jin L, Shi P, Li Z et al (2017) Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway. J Mol Med (Berl) 95(3):311–322. https://doi.org/10.1007/s00109-016-1487-z

    Article  CAS  Google Scholar 

  132. Sumitomo M, Ohba M, Asakuma J, Asano T, Kuroki T, Asano T et al (2002) Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest 109(6):827–836. https://doi.org/10.1172/JCI14146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun B, Lu C, Zhou GP, Xing CY (2011a) Suppression of Par-4 protects human renal proximal tubule cells from apoptosis induced by oxidative stress. Nephron Exp Nephrol 117(3):e53–e61. doi:10.1159/000320593 10.1159/000320594

    Article  CAS  PubMed  Google Scholar 

  134. Sun T, Li D, Wang L, Xia L, Ma J, Guan Z et al (2011b) c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J Transl Med 9:161. https://doi.org/10.1186/1479-5876-9-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151. https://doi.org/10.1038/ncb1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800. https://doi.org/10.1101/gad.2016211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Taniguchi M, Kitatani K, Kondo T, Hashimoto-Nishimura M, Asano S, Hayashi A et al (2012) Regulation of autophagy and its associated cell death by "sphingolipid rheostat": reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J Biol Chem 287(47):39898–39910. https://doi.org/10.1074/jbc.M112.416552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241. https://doi.org/10.1038/nrm2312

    Article  CAS  PubMed  Google Scholar 

  139. Thayyullathil F, Pallichankandy S, Rahman A, Kizhakkayil J, Chathoth S, Patel M et al (2013) Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells. J Mol Signal 8(1):2. https://doi.org/10.1186/1750-2187-8-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S (2014) ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 4:763–776. https://doi.org/10.1016/j.fob.2014.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Thayyullathil F, Cheratta AR, Pallichankandy S, Subburayan K, Tariq S, Rangnekar VM et al (2020) Par-4 regulates autophagic cell death in human cancer cells via upregulating p53 and BNIP3. Biochim Biophys Acta, Mol Cell Res 1867(7):118692. https://doi.org/10.1016/j.bbamcr.2020.118692

    Article  CAS  Google Scholar 

  142. Tiruttani Subhramanyam UK, Kubicek J, Eidhoff UB, Labahn J (2017) Structural basis for the regulatory interactions of proapoptotic Par-4. Cell Death Differ 24(9):1540–1547. https://doi.org/10.1038/cdd.2017.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vasudevan KM, Ranganathan P, Rangnekar VM (2006) Regulation of Par-4 by oncogenic Ras. Methods Enzymol 407:422–442. https://doi.org/10.1016/S0076-6879(05)07035-7

    Article  CAS  PubMed  Google Scholar 

  144. Venable ME, Bielawska A, Obeid LM (1996) Ceramide inhibits phospholipase D in a cell-free system. J Biol Chem 271(40):24800–24805. https://doi.org/10.1074/jbc.271.40.24800

    Article  CAS  PubMed  Google Scholar 

  145. Wang G, Bieberich E (2010) Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development. Cell Death Dis 1:e46. https://doi.org/10.1038/cddis.2010.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280(28):26415–26424. https://doi.org/10.1074/jbc.M501492200

    Article  CAS  PubMed  Google Scholar 

  147. Wang G, Silva J, Dasgupta S, Bieberich E (2008) Long-chain ceramide is elevated in presenilin 1 (PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia 56(4):449–456. https://doi.org/10.1002/glia.20626

    Article  PubMed  Google Scholar 

  148. Wang BD, Kline CL, Pastor DM, Olson TL, Frank B, Luu T et al (2010) Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer 9:98. https://doi.org/10.1186/1476-4598-9-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A et al (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287(25):21384–21395. https://doi.org/10.1074/jbc.M112.340513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang LJ, Chen PR, Hsu LP, Hsu WL, Liu DW, Chang CH et al (2014) Concomitant induction of apoptosis and autophagy by prostate apoptosis response-4 in hypopharyngeal carcinoma cells. Am J Pathol 184(2):418–430. https://doi.org/10.1016/j.ajpath.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  151. Wijesinghe DS, Massiello A, Subramanian P, Szulc Z, Bielawska A, Chalfant CE (2005) Substrate specificity of human ceramide kinase. J Lipid Res 46(12):2706–2716. https://doi.org/10.1194/jlr.M500313-JLR200

    Article  CAS  PubMed  Google Scholar 

  152. Xie J, Guo Q (2005) PAR-4 is involved in regulation of beta-secretase cleavage of the Alzheimer amyloid precursor protein. J Biol Chem 280(14):13824–13832. https://doi.org/10.1074/jbc.M411933200

    Article  CAS  PubMed  Google Scholar 

  153. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109. https://doi.org/10.1038/ncb1007-1102

    Article  CAS  PubMed  Google Scholar 

  154. Yang Z, Huang J, Geng J, Nair U, Klionsky DJ (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17(12):5094–5104. https://doi.org/10.1091/mbc.e06-06-0479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang YL, Ji C, Bi ZG, Lu CC, Wang R, Gu B et al (2013) Deguelin induces both apoptosis and autophagy in cultured head and neck squamous cell carcinoma cells. PLoS One 8(1):e54736. https://doi.org/10.1371/journal.pone.0054736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502. https://doi.org/10.1126/science.1096645

    Article  CAS  PubMed  Google Scholar 

  157. Zhao Y, Rangnekar VM (2008) Apoptosis and tumor resistance conferred by Par-4. Cancer Biol Ther 7(12):1867–1874. https://doi.org/10.4161/cbt.7.12.6945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the Sehamuddin Galadari laboratory for their helpful discussions. The authors apologize to those investigators whose publications were not mentioned in this review due to space limitations. This work is supported by Al Jalila Foundation for Medical Research grant RA 234 (AJF201631) and New York University Abu Dhabi Research grant AD 252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehamuddin Galadari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galadari, S., Cheratta, A.R., Thayyullathil, F. (2022). Regulation of Tumor Suppressor Par-4 by Ceramide. In: Rangnekar, V.M. (eds) Tumor Suppressor Par-4. Springer, Cham. https://doi.org/10.1007/978-3-030-73572-2_10

Download citation

Publish with us

Policies and ethics