Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 383 Accesses

Abstract

One of the first effects that can be studied with high-intensity lasers is radiation reaction [1, 2]. Several configurations are possible to study this effect, among which we find: the head-on collision between a high-intensity laser and a high energy electron beam, or the interaction of a high-intensity laser with a hot Maxwell-Jüttner distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Appendix C.3 for more information about the functions \(B_n\).

References

  1. Cole JM, et al (2017) Experimental observation of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. arXiv:1707.06821

  2. Poder K et al (2017) Evidence of strong radiation reaction in the field of an ultra-intense laser. arXiv:1709.01861

    Google Scholar 

  3. Fedotov AM (2016) Quantum regime of laser-matter interactions at extreme intensities. arXiv: 1612.02038v1

  4. Bell AR, Kirk JG (2008) Possibility of prolific pair production with high-power lasers. Phys Rev Lett 101:200403

    Article  ADS  Google Scholar 

  5. Kirk JG, Bell AR, Arka I (2009) Pair production in counter-propagating laser beams. Plasma Phys Controlled Fusion 51(8):085008

    Article  ADS  Google Scholar 

  6. Fedotov AM, Narozhny NB, Mourou G, Korn G (2010) Limitations on the attainable intensity of high power lasers. Phys Rev Lett 105:080402

    Article  ADS  Google Scholar 

  7. Elkina NV, Fedotov AM, Kostyukov IY, Legkov MV, Narozhny NB, Nerush EN, Ruhl H (2011b) QED cascades induced by circularly polarized laser fields. Phys Rev ST Accel Beams 14:054401

    Article  ADS  Google Scholar 

  8. Grismayer T, Vranic M, Martins JL, Fonseca RA, Silva LO (2017) Seeded QED cascades in counterpropagating laser pulses. Phys Rev E 95:023210

    Article  ADS  Google Scholar 

  9. Tamburini M, Di Piazza A, Keitel CH (2017) Laser-pulse-shape control of seeded QED cascades. Sci Rep 7(1):5694

    Article  ADS  Google Scholar 

  10. Nerush EN, Bashmakov VF, Kostyukov IY (2011) Analytical model for electromagnetic cascades in rotating electric field. Phys Plasmas 18(8):083107

    Article  ADS  Google Scholar 

  11. Samsonov AS, Nerush EN, Kostyukov IY (2018) Asymptotic electron motion in the strongly-radiation-dominated regime. Phys Rev A 98:053858

    Article  ADS  Google Scholar 

  12. Doveil F (1981) Stochastic plasma heating by a large-amplitude standing. Phys Rev Lett 46(8):532

    Article  ADS  MathSciNet  Google Scholar 

  13. Bauer D (1995) Relativistic ponderomotive force, uphill acceleration, and transition to chaos. Phys Rev Lett 75(25):4622

    Article  ADS  Google Scholar 

  14. Esirkepov T (2015) Attractors and chaos of electron dynamics in electromagnetic standing waves. Phys Lett A 379:2044–2054

    Article  ADS  MathSciNet  Google Scholar 

  15. Esirkepov T (2017) Paradoxical stabilization of forced oscillations by strong nonlinear friction. Phys Lett A 381:2559–2564

    Article  ADS  MathSciNet  Google Scholar 

  16. Bulanov SV, Esirkepov TZ, Kando M, Koga JK, Bulanov SS (2011) Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultra relativistic electron interaction with electromagnetic wave (exact solutions). Phys Rev E 84:056605

    Article  ADS  Google Scholar 

  17. Niel F, Riconda C, Amiranoff F, Duclous R, Grech M (2018a) From quantum to classical modeling of radiation reaction: a focus on stochasticity effects. Phys Rev E 97:043209

    Article  ADS  Google Scholar 

  18. Bashmakov VF, Nerush EN, Kostyukov I Yu, Fedotov AM, Narozhny NB (2013) Effect of laser polarization on QED cascading. arXiv: 1310(4077)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Niel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niel, F. (2021). QED Cascades in Counterpropagating Plane-Waves. In: Classical and Quantum Description of Plasma and Radiation in Strong Fields. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-73547-0_8

Download citation

Publish with us

Policies and ethics